About the decoupled fates of aluminium, manganese, cobalt and lead in the North Pacific Ocean

Did you know that each of these tracers could follow its own marine story, quite decoupled from the others?

This is what is shown and discussed by Zheng and co-workers (2019, see reference below) after having analysed about 500 samples for aluminium (Al), manganese (Mn), lead (Pb) and cobalt (Co) along three sections in the North Pacific Ocean. They demonstrate that the distribution of each element is uniquely related to ocean circulation; that the subsurface Pb maximum has been sustained in the North Pacific Ocean through the growth of anthropogenic sources in Asia and Russia, contrasting with the decrease observed in the Atlantic Ocean (please also read the science highlight from Bridgestock et al., 2016); that the labile fraction of particulate Al is larger than that of particulate lead; and finally that while the Pb enrichment factor confirms its predominant atmospheric origin, those of Mn and Co clearly attest that sources other than the aerosol deposition are more significant contributors to the concentrations of these two tracers.

Figure: Sectional distributions of dissolved metals (dM) and potential density anomaly at depths of 0–1200 m along 160°W (section highlighted in red in the map). Dissolved aluminium (dAl) is high in Equatorial Under Current (EQ, 175 m depth) and North Equatorial Current (20°N, surface). Although dissolved manganese (dMn) and dissolved cobalt (dCo) have a concurrent source at the continental shelf of the Aleutian Islands, dCo is more widely distributed via North Pacific Intermediate Water (NPIW, ~600 m). Dissolved lead (dPb) is concentrated in Subtropical Mode Water and Central Mode Water above the NPIW. Adapted from Zheng et al., 2019. Click here to view the figure larger.

Reference:

Zheng, L., Minami, T., Konagaya, W., Chan, C.-Y., Tsujisaka, M., Takano, S., Norisuye, K., Sohrin, Y. (2019). Distinct basin-scale-distributions of aluminum, manganese, cobalt, and lead in the North Pacific Ocean. Geochimica et Cosmochimica Acta, 254, 102–121. DOI: http://doi.org/10.1016/J.GCA.2019.03.038

Bridgestock, L., van de Flierdt, T., Rehkämper, M., Paul, M., Middag, R., Milne, A., Lohan, M.C., Baker, A.R., Chance, R.,, Khondoker, R., Strekopytov, S., Humphreys-Williams, E., Achterberg, E.P., Rijkenberg, M.J.A., Gerringa, L. J.A., de Baar, H. J. W. (2016). Return of naturally sourced Pb to Atlantic surface waters. Nature Communications, 7, 12921. doi: http://doi.org/10.1038/ncomms12921

Latest highlights

Science Highlights

Different fates of four poorly soluble trace elements in the Pacific Ocean

Zheng and co-authors present the full-depth distributions of aluminum, lead, manganese and copper in the western South Pacific.

24.11.2022

Science Highlights

Internal tides, energetic dynamical processes that generate particle nepheloids at different depths

In this study, Barbot and co-authors identified the sites where internal tides are responsible for sediment resuspension…

09.11.2022

Science Highlights

Greenland’s floating ice tongues, sources of dissolved lead to the Arctic

Using helium and neon as tracers for subglacial meltwater, Krisch and colleagues found that subglacial discharge is a source of dissolved lead.

Science Highlights

Shelf sediments in the Benguela Upwelling System as a major source of trace metals to the shelf and eastern South Atlantic Ocean

Liu and her colleagues investigated dissolved trace metals distributions within the Benguela Upwelling System sampled from GEOTRACES GA08 cruise.

21.10.2022

Rechercher