Debate on the dissolved nickel bioavailibility in surface waters

John and co-authors (2022, see reference below) tackle one of the known paradoxes regarding trace metal cycles in the ocean: the dissolved nickel (Ni) leftover systematically observed in surface waters while Ni is a limiting factor for the phytoplankton development. Their strategy follows a double approach: test of the lability and bioavailability of Ni in the surface ocean using trace metal extraction from surface waters using chelating resins and controlled phytoplankton cultures, respectively; test of what controls the fluxes of Ni into the deeper ocean, with regards to the phosphate export and remineralization. These two main processes that govern the Ni cycles are thus confronted to field and experimental data using 7 different sensitivity tests with the AWSOME-OCIM model. In the end, the authors suggest that slow depletion of Ni relative to macronutrients in upwelling regions can explain the residual Ni pool. They also propose that slower regeneration of Ni compared with macronutrients explains the strong Ni enrichment in deep waters.

Figure: Modeled nickel concentrations match observations throughout the global oceans, with an R-squared of 0.95, where background fields represent model output and circles represent observations. Model nickel concentrations in the surface ocean are never depleted much below 2 nM, despite all of the Ni being bioavailable in the model. The model also reproduces the relatively deep regeneration of Ni compared to macronutrients N and P.


John, S. G., Kelly, R. L., Bian, X., Fu, F., Smith, M. I., Lanning, N. T., Liang, H., Pasquier, B., Seelen, E. A., Holzer, M., Wasylenki, L., Conway, T. M., Fitzsimmons, J. N., Hutchins, D. A., & Yang, S.-C. (2022). The biogeochemical balance of oceanic nickel cycling. Nature Geoscience. Access the paper:10.1038/s41561-022-01045-7

Latest highlights

Overlooked riverine contributions of dissolved neodymium and hafnium to the Amazon estuary and oceans

Xu and colleagues investigated the isotopic composition of dissolved neodymium and hafnium along the entire salinity gradient of the Amazon estuary.

Pulling back the veil on reversible scavenging of lead

This work further contains the role that reversible scavenging may play in the cycling of lead in the ocean, an ever-evolving global experiment where lead contamination can be tracked in real-time.

Extremely high radioactive levels in the manganese nodules

Volz and co-authors demonstrate that radioisotopes in the manganese nodules mostly exceed exempt activity levels…

The North Pacific Ocean, a key actor for the zinc oceanic cycle

Sieber and his colleagues lift the veil on some of the mechanisms that control the behavior of zinc in the Pacific Ocean, and more globally.