Debate on the dissolved nickel bioavailibility in surface waters

John and co-authors (2022, see reference below) tackle one of the known paradoxes regarding trace metal cycles in the ocean: the dissolved nickel (Ni) leftover systematically observed in surface waters while Ni is a limiting factor for the phytoplankton development. Their strategy follows a double approach: test of the lability and bioavailability of Ni in the surface ocean using trace metal extraction from surface waters using chelating resins and controlled phytoplankton cultures, respectively; test of what controls the fluxes of Ni into the deeper ocean, with regards to the phosphate export and remineralization. These two main processes that govern the Ni cycles are thus confronted to field and experimental data using 7 different sensitivity tests with the AWSOME-OCIM model. In the end, the authors suggest that slow depletion of Ni relative to macronutrients in upwelling regions can explain the residual Ni pool. They also propose that slower regeneration of Ni compared with macronutrients explains the strong Ni enrichment in deep waters.

Figure: Modeled nickel concentrations match observations throughout the global oceans, with an R-squared of 0.95, where background fields represent model output and circles represent observations. Model nickel concentrations in the surface ocean are never depleted much below 2 nM, despite all of the Ni being bioavailable in the model. The model also reproduces the relatively deep regeneration of Ni compared to macronutrients N and P.


John, S. G., Kelly, R. L., Bian, X., Fu, F., Smith, M. I., Lanning, N. T., Liang, H., Pasquier, B., Seelen, E. A., Holzer, M., Wasylenki, L., Conway, T. M., Fitzsimmons, J. N., Hutchins, D. A., & Yang, S.-C. (2022). The biogeochemical balance of oceanic nickel cycling. Nature Geoscience. Access the paper:10.1038/s41561-022-01045-7

Latest highlights

Science Highlights

Different fates of four poorly soluble trace elements in the Pacific Ocean

Zheng and co-authors present the full-depth distributions of aluminum, lead, manganese and copper in the western South Pacific.


Science Highlights

Internal tides, energetic dynamical processes that generate particle nepheloids at different depths

In this study, Barbot and co-authors identified the sites where internal tides are responsible for sediment resuspension…


Science Highlights

Greenland’s floating ice tongues, sources of dissolved lead to the Arctic

Using helium and neon as tracers for subglacial meltwater, Krisch and colleagues found that subglacial discharge is a source of dissolved lead.

Science Highlights

Shelf sediments in the Benguela Upwelling System as a major source of trace metals to the shelf and eastern South Atlantic Ocean

Liu and her colleagues investigated dissolved trace metals distributions within the Benguela Upwelling System sampled from GEOTRACES GA08 cruise.