Dealing with the chemical speciation of the elements in the different oceanic realms

First paper of the SCOR working group on modelling chemical speciation in seawater (WG145)

The form in which a trace element or other component of seawater is present, and its tendency to react, depends on its activity which is a complex function of temperature, pressure, salinity and often pH.

The most widely used equations that are used to calculate activities of dissolved ions and molecules and, in combination with thermodynamic equilibrium constants, chemical speciation are called “Pitzer equations”. Models based on the Pitzer equations are used to calculate chemical speciation of any element, providing a key to establish the reactivity of this element, as for example its ability to be assimilated by the phytoplankton.

David Turner and his colleagues, all members of the SCOR Working Group 145 propose an overview of work for the development of a quality-controlled chemical speciation model for seawater and related systems, including descriptions of the different applications that can benefit from the model (open ocean acidification; micronutrient biogeochemistry and geochemical tracers; micronutrient behavior in laboratory studies; water quality in coastal and estuarine waters; cycling of nutrients and trace metals in pore waters; chemical equilibrium in hydrothermal systems; brines and salt lakes).

16 WG145 SCOR
Figure: Some members of the SCOR WG145 (from left to right): David Turner, Christoph Voelker, Andrew Dickson, Arthur Chen, Eric Acherberg, Ed Urban, Alessandro Tagliabue, Mona Wells, Sylvia Sander, Stan van den Berg, Rodrigo Torres, Vanessa Hatje and Ivanka Pizeta.

Reference:

Turner, D. R., Achterberg, E. P., Chen, C.-T. A., Clegg, S. L., Hatje, V., Maldonado, M. T., Sander, G.S., van den Berg, C.M.G., Wells, M. (2016). Toward a Quality-Controlled and Accessible Pitzer Model for Seawater and Related Systems. Frontiers in Marine Science, 3, 139. doi:10.3389/fmars.2016.00139

Latest highlights

East-West contrasting fate and anthropogenic inputs for dissolved trace metals in the Subarctic Pacific Ocean

Chan and co-authors report the full-depth distribution of dissolved nickel, copper, zinc, and cadmium in the North Pacific Ocean.

Comprehensive quantification of the rare earth element cycle in the northwest Pacific Ocean

Cao and co-authors investigate dissolved rare earth elements and the factors controlling their distributions in the northwest Pacific Ocean.

Iron and zinc isotopes disentangle the anthropogenic, natural and wildfire sources of aerosols over the North and Equatorial Pacific Ocean

Bunnell and co-authors analysed aerosol iron and zinc isotopic compositions along the North Pacific GEOTRACES GP15 section (Alaska-Tahiti).

Contribution of sandy beaches to the oceanic silica cycle

This paper calls into question the commonly accepted idea of an oceanic silicon cycle in equilibrium.

Rechercher