Copper and zinc oceanic mass balance revisited

Little and co-workers (2014; see reference below) propose an update of the oceanic copper (Cu) and zinc (Zn) mass balance, with the original approach that takes into account the hitherto ignored constraint of their isotopes. They establish an up-to-date inventory of the input fluxes of these tracers with their isotopic signatures, discuss the internal processes that might fractionate both tracers and evaluate one major sedimentary sink: sediments deposited beneath an oxic water column. Although the Cu oceanic mass balance appears to be roughly in balance, the Zn one is far from being constrained… isotopes reveal that either an “isotopically light sink” or “isotopically heavy source” is missing.

14 Little Zn l
Figure: This figure illustrates the global ocean isotopic mass balance of Zn. Click here to view the figure larger.

 

Reference:

Little, S. H., Vance, D., Walker-Brown, C., & Landing, W. M. (2014). The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta, 125, 673–693. doi:10.1016/j.gca.2013.07.046 Click here to view the paper.

Latest highlights

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.

18.01.2021

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Science Highlights

Isopycnal mixing controls protactinium and thorium distributions in the Pacific Southern Ocean

Pavia and co-workers determined the physical and chemical speciation as well as the vertical distribution of Protactinium-231 and Thorium-230 at 12 stations across the Southern Pacific Antarctic Circumpolar Current…

13.12.2020

Rechercher