Copper and zinc oceanic mass balance revisited

Little and co-workers (2014; see reference below) propose an update of the oceanic copper (Cu) and zinc (Zn) mass balance, with the original approach that takes into account the hitherto ignored constraint of their isotopes. They establish an up-to-date inventory of the input fluxes of these tracers with their isotopic signatures, discuss the internal processes that might fractionate both tracers and evaluate one major sedimentary sink: sediments deposited beneath an oxic water column. Although the Cu oceanic mass balance appears to be roughly in balance, the Zn one is far from being constrained… isotopes reveal that either an “isotopically light sink” or “isotopically heavy source” is missing.

14 Little Zn l
Figure: This figure illustrates the global ocean isotopic mass balance of Zn. Click here to view the figure larger.

 

Reference:

Little, S. H., Vance, D., Walker-Brown, C., & Landing, W. M. (2014). The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta, 125, 673–693. doi:10.1016/j.gca.2013.07.046 Click here to view the paper.

Latest highlights

Iron limitation also affects the twilight zone

Li and co-workers established the distribution and uptake of siderophores along the Pacific meridional section (GP15 GEOTRACES cruise)…

Long distance dissolved iron transport in the North-East Pacific revealed by multiple tracers and an ocean circulation model

Sieber and co-authors have made extensive use of the multi-tracer approach, coupled to an oceanic circulation model…

Two papers describe findings on Rare Earth Elements in the North Atlantic Ocean (GEOVIDE cruise)

Lagarde and co-authors investigated the Rare Earth Element cycle along the GA01 transect…

Deep-sea mining, dewatering waste, accidental plumes and their potential consequences on trace metal fates in the North Pacific Ocean

Xiang and his colleagues conducted laboratory incubation experiments that simulate mining discharge into anoxic waters…

Rechercher