Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper (Cu), artificial neural networks, and an ocean circulation inverse model, Roshan and collaborators (2020, see references below) calculated a global estimate of the 3-dimensional distribution and cycling of dissolved Cu in the ocean (see Figure). Among the most striking features, they reveal that: (1) the highest surface dissolved Cu concentrations and the highest rates of dissolved Cu export occur in the Southern Ocean and, and (2) Cu is removed predominantly in the ocean interior but a near-sediment source sustains its vertical accumulation.

Figure: Estimates of dissolved copper rates (in Gmol yr-1; positive = added, negative = removed) and its water column residence times (τ; in years). Modified from Roshan et al., 2020.

References:

Roshan, S., DeVries, T., & Wu, J. (2020). Constraining the Global Ocean Cu Cycle With a Data‐Assimilated Diagnostic Model. Global Biogeochemical Cycles, 34. DOI: https://doi.org/10.1029/2020GB006741

Roshan, S., DeVries, T. & Wu, J. (2020). Dissolved Copper Climatology. figshare. DOI: https://doi.org/10.6084/m9.figshare.11827908.v2 

Latest highlights

Strong lithogenic imprints in the Indian Ocean waters

Ueki and co-authors reported the first sectional distributions of zirconium, hafnium and niobium along a north-source track in the Indian Ocean.

The development of the modern Antarctic Circumpolar Current occurred much later than previously thought!

This study is challenging the belief that the onset of the Antarctic Circumpolar Current was solely triggered by the opening and deepening of Southern Ocean Gateways.

A dynamic iron cycle in Peru

Gu and colleagues explore the temporal variation of iron over 11 cruises along the Peruvian shelf.

Trace metal fluxes of cadmium, copper, lead and zinc from the Congo River into the South Atlantic Ocean are supplemented by atmospheric inputs

Liu and colleagues show that rainfall augments some fluxes of trace metals from the Congo River.

Rechercher