Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper (Cu), artificial neural networks, and an ocean circulation inverse model, Roshan and collaborators (2020, see references below) calculated a global estimate of the 3-dimensional distribution and cycling of dissolved Cu in the ocean (see Figure). Among the most striking features, they reveal that: (1) the highest surface dissolved Cu concentrations and the highest rates of dissolved Cu export occur in the Southern Ocean and, and (2) Cu is removed predominantly in the ocean interior but a near-sediment source sustains its vertical accumulation.

Figure: Estimates of dissolved copper rates (in Gmol yr-1; positive = added, negative = removed) and its water column residence times (τ; in years). Modified from Roshan et al., 2020.

References:

Roshan, S., DeVries, T., & Wu, J. (2020). Constraining the Global Ocean Cu Cycle With a Data‐Assimilated Diagnostic Model. Global Biogeochemical Cycles, 34. DOI: https://doi.org/10.1029/2020GB006741

Roshan, S., DeVries, T. & Wu, J. (2020). Dissolved Copper Climatology. figshare. DOI: https://doi.org/10.6084/m9.figshare.11827908.v2 

Latest highlights

Science Highlights

Updated compilation of the global continental and marine lithogenic neodymium isotopic measurements

This new compilation and gridded datasets offer a concrete way forward to improve the application of Nd isotopes as a useful tracer of ocean circulation.

05.05.2021

Science Highlights

Neodymium concentrations and isotopes help disentangling Siberian river influences on the Arctic Ocean

Paffrath and co-autors followed the relative contributions of the main Siberian rivers to the waters of the Transpolar Drift using neodymium parameters.

Science Highlights

A new and more quantitative atlas of the deep-sea burial fluxes of major and trace elements

Among other findings, authors find that the new opal flux is roughly a factor of 2 increase over previous estimates having important implications for the global silicon cycle.

04.05.2021

Science Highlights

Manganese: a surprising co-limiting factor of phytoplankton growth in the Southern Ocean

One of the main consequences of this work is that manganese should be included in ocean-climate models, more particularly to improve the accuracy of their predictions in this area.

Rechercher