Challenging results on iron bioavailability in the Southern Ocean

Fourquez and co-authors (2023, see reference below) conducted dissolved iron (dFe) uptake experiments with Phaeocystis antarctica, in order to establish processes controlling the dFe bioavailability in natural samples of the Southern Ocean. They show that the degree of bioavailability varied regardless of in situ dFe concentration and depth. This first result challenges the consensus that sole dFe concentrations can be used to predict Fe uptake in modeling studies. In addition, the range of this degree of bioavailability is wider than previously thought (<1 to ~200% compared to free inorganic Fe’). The authors also propose to couple dataset of Fe-binding ligands, dFe bioavailability, and δ56Fe. Contrasting again with previous assumptions, they observe a negative correlation between dissolved δ56Fe and total ligand concentrations, which might suggest against a role for complexation in driving dissolved δ56Fe toward higher values.

Figure: This study investigates factors influencing the availability of a type of iron, dFe. In part (A), a table shows relationships between different iron forms, dFe availability, and iron uptake. Colours indicate the strength of connections, and stars mark significant relationships (P values smaller than 0.05). Part (B) uses PCA to explore correlations between iron uptake, chemistry, and ligands. The blue arrows represent key influences. The first two factors explain 36.55% and 24.13% of observed differences. We confirmed data normality with the Henze-Zirkler test.

Reference:

Fourquez, M., Janssen, D. J., Conway, T. M., Cabanes, D., Ellwood, M. J., Sieber, M., Trimborn, S., & Hassler, C. (2023). Chasing iron bioavailability in the Southern Ocean: Insights from Phaeocystis antarctica and iron speciation. Science Advances, 9. Access the paper: https://doi.org/10.1126/sciadv.adf9696

Latest highlights

Breaking down disciplinary silos in marine sciences, a key to climate forecasting

Alessandro Tagliabue exposes how ocean modelling must evolve to take the biological complexity of the surface ocean into account.

Lead isotopes allow tracing the processes injecting of anthropogenic lead in deep waters

This work follows the penetration of anthropogenic lead (traced using its isotopic signatures) into the pristine deep Pacific Ocean.

Protactinium-231 budget of the Atlantic sector of Southern Ocean

Levier and colleagues analysed dissolved and particulate protactinium-231 in samples collected in a section in the Southern Ocean…

Using machine learning to accurately simulate the oceanic barium distribution

Mete and colleagues used machine learning to predict the global distribution of oceanic barium…

Rechercher