Challenging results on iron bioavailability in the Southern Ocean

Fourquez and co-authors (2023, see reference below) conducted dissolved iron (dFe) uptake experiments with Phaeocystis antarctica, in order to establish processes controlling the dFe bioavailability in natural samples of the Southern Ocean. They show that the degree of bioavailability varied regardless of in situ dFe concentration and depth. This first result challenges the consensus that sole dFe concentrations can be used to predict Fe uptake in modeling studies. In addition, the range of this degree of bioavailability is wider than previously thought (<1 to ~200% compared to free inorganic Fe’). The authors also propose to couple dataset of Fe-binding ligands, dFe bioavailability, and δ56Fe. Contrasting again with previous assumptions, they observe a negative correlation between dissolved δ56Fe and total ligand concentrations, which might suggest against a role for complexation in driving dissolved δ56Fe toward higher values.

Figure: This study investigates factors influencing the availability of a type of iron, dFe. In part (A), a table shows relationships between different iron forms, dFe availability, and iron uptake. Colours indicate the strength of connections, and stars mark significant relationships (P values smaller than 0.05). Part (B) uses PCA to explore correlations between iron uptake, chemistry, and ligands. The blue arrows represent key influences. The first two factors explain 36.55% and 24.13% of observed differences. We confirmed data normality with the Henze-Zirkler test.

Reference:

Fourquez, M., Janssen, D. J., Conway, T. M., Cabanes, D., Ellwood, M. J., Sieber, M., Trimborn, S., & Hassler, C. (2023). Chasing iron bioavailability in the Southern Ocean: Insights from Phaeocystis antarctica and iron speciation. Science Advances, 9. Access the paper: https://doi.org/10.1126/sciadv.adf9696

Latest highlights

The tumultuous life of the Antarctic Circumpolar Current over 5,3 million years, including focus on the glacial-interglacial forcing!

To reconstruct the strength of the Antarctic Circumpolar Current, the authors used sediment records from the pelagic central and remote South Pacific.

North-South radium-228 section in the Pacific Ocean

Moore and colleagues present results from radium-228 along the U.S. GEOTRACES Pacific Meridional Transect (GP15).

Strong lithogenic imprints in the Indian Ocean waters

Ueki and co-authors reported the first sectional distributions of zirconium, hafnium and niobium along a north-south track in the Indian Ocean.

The development of the modern Antarctic Circumpolar Current occurred much later than previously thought!

This study is challenging the belief that the onset of the Antarctic Circumpolar Current was solely triggered by the opening and deepening of Southern Ocean Gateways.

Rechercher