Cadmium isotopes, tracers of the cadmium sequestration as cadmium sulphide in oxygen minimum zone?

The linear relationship between the seawater cadmium and phosphate dissolved concentrations lead to use the cadmium/calcium (Cd/Ca) imprinted in calcareous archives to reconstruct the past phosphate (PO4) distributions. However, variations in the Cd/PO4 ratio between different water masses and within vertical oceanic profiles were recently identified. Among the processes that could explain these variations, sequestration of Cd into sulphide phases in microenvironments within sinking biogenic particles has been suggested as a mechanism for Cd depletion (Figure C). Guinoiseau and co-workers (2018, see reference below) experimentally tested if the cadmium sulphide (CdS) precipitation results in a fractionation of Cd isotopes. These experiments were conducted under low oxygen condition, in fresh and salty water, with variable cadmium/sulphide ratios… and they demonstrate, for the first time, an enrichment of light Cd isotopes in the precipitated CdS (Figure A) and a decrease in the fractionation factor (αCdsolution–CdS) with increasing salinity. The fractionation factor between CdS and the seawater matches remarkably the Cd isotope shift observed in modern oceanic oxygen minimum zone (Figure B). In other words, this work proposes that Cd isotopes are interesting tracers of the sequestration of Cd as CdS in low oxygen environment.

18 Guinoiseau

Figure: Identification of cadmium sulphide (CdS) precipitates as an important Cd sequestration process in the ocean. A) Determination of Cd isotope fractionation (αCdsolution-CdS in the figure) during precipitation of CdS in seawater matrix. B) Agreement between the experimental fractionation factor and the seawater isotope data recorded in oxygen minimum zone (OMZ) where CdS is prone to precipitate. C) Schematic view of CdS process occurring within sinking biogenic particles. Click here to view the figure larger.

Reference:

Guinoiseau, D., Galer, S. J. G., & Abouchami, W. (2018). Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: Implications for the oceanic Cd cycle. Earth and Planetary Science Letters, 498, 300–308. DOI: http://doi.org/10.1016/J.EPSL.2018.06.039

Latest highlights

Science Highlights

Scavenging differentiates the distribution of cadmium, nickel, zinc and copper in the North Pacific Ocean

Zheng and co-authors observed sectional distributions of cadmium, nickel, zinc, and copper in the North Pacific Ocean during three GEOTRACES related cruises…

19.07.2021

Science Highlights

Surprising conservativity of trace metals along a costal embayment salinity gradient

Chen and co-workers analyzed an array of trace metals together with Rare Earth Elements in a salinity gradient in the Jinhae Bay, the largest semi-enclosed bay in South Korea…

08.07.2021

Science Highlights

Measuring actinium-227 by mass spectrometry is feasible, sensitive and reliable!

Levier and co-authors have developed a new protocol measurement of the dissolved actinium in seawater.

05.07.2021

Science Highlights

Pros and cons of carbon, nitrogen and silicon as tracers of modern and paleo-productivity

Farmer and colleagues review the geochemical proxies based upon sedimentary isotope ratios of three abundant biologically mediated elements.

01.07.2021

Rechercher