Breaking down disciplinary silos in marine sciences, a key to climate forecasting

In a Nature comment, Alessandro Tagliabue (2023, see reference below) exposes how ocean modelling must evolve to take the biological complexity of the surface ocean into account. There is an urgent need to understand how marine microbes are affected by the climate change, allowing us to forecast the future state of the oceans. Indeed, there is little confidence today on predictions of how marine microbes will react to global changes.

After an analysis of the pro and cons of the biogeochemical models, the mechanistic metabolic models, or the exploitation of statistics, Tagliabue advocates that researchers in mathematical and ecological theory should break down their disciplinary silos, to improve and share their fundamental knowledge and benefit from the growing computing power to develop new generations of models. These models allowing a considerable step forward in our ability to overcome the ocean complexity and to forecast it.

Phytoplankton blooms (green and light blue) in the southwestern South Atlantic Ocean near the Falkland Islands.
Credit: NASA Ocean Biology Processing Group. Collected by the two VIIRS sensors (NOAA 20 and Suomi-NPP) on January 5, 2021. NASA Ocean Biology Distributed Active Archive Center. Retrieved from https://oceancolor.gsfc.nasa.gov/gallery/738/

Reference:

Tagliabue, A. (2023). ‘Oceans are hugely complex’: modelling marine microbes is key to climate forecasts. Nature623, 250–252. Access the paper:10.1038/d41586-023-03425-4

Latest highlights

Trace metal fluxes of cadmium, copper, lead and zinc from the Congo River into the South Atlantic Ocean are supplemented by atmospheric inputs

Liu and colleagues show that rainfall augments some fluxes of trace metals from the Congo River.

Aluminium, manganese, iron, cobalt, and lead display contrasting fate along north–south and east–west sections in the North Pacific Ocean

Chan et co-authors provide a comprehensive view of trace metal distribution in the subarctic Pacific Ocean.

Trans Polar Drift transport controls the dissolved copper-organic binding ligand distribution

Arnone and her colleagues report the concentrations and conditional stability constants of dissolved copper-binding ligands in the Arctic Ocean…

The development of the modern Antarctic Circumpolar Current occurred much later than previously thought!

This study is challenging the widespread belief that the onset of the Antarctic Circumpolar Current was solely triggered by the opening and deepening of Southern Ocean Gateways.

Rechercher