Breaking down disciplinary silos in marine sciences, a key to climate forecasting

In a Nature comment, Alessandro Tagliabue (2023, see reference below) exposes how ocean modelling must evolve to take the biological complexity of the surface ocean into account. There is an urgent need to understand how marine microbes are affected by the climate change, allowing us to forecast the future state of the oceans. Indeed, there is little confidence today on predictions of how marine microbes will react to global changes.

After an analysis of the pro and cons of the biogeochemical models, the mechanistic metabolic models, or the exploitation of statistics, Tagliabue advocates that researchers in mathematical and ecological theory should break down their disciplinary silos, to improve and share their fundamental knowledge and benefit from the growing computing power to develop new generations of models. These models allowing a considerable step forward in our ability to overcome the ocean complexity and to forecast it.

Phytoplankton blooms (green and light blue) in the southwestern South Atlantic Ocean near the Falkland Islands.
Credit: NASA Ocean Biology Processing Group. Collected by the two VIIRS sensors (NOAA 20 and Suomi-NPP) on January 5, 2021. NASA Ocean Biology Distributed Active Archive Center. Retrieved from https://oceancolor.gsfc.nasa.gov/gallery/738/

Reference:

Tagliabue, A. (2023). ‘Oceans are hugely complex’: modelling marine microbes is key to climate forecasts. Nature623, 250–252. Access the paper:10.1038/d41586-023-03425-4

Latest highlights

The Amazonian mangrove systems accumulate and release dissolved neodymium and hafnium to the oceans

Xu and colleagues investigated the concentrations of rare earth elements in the Amazonian mangrove.

Biological production of ligands influences iron chemistry in hydrothermal systems

For the first time, siderophores and siderophore-producing microbes were determined in 11 distinct hydrothermal plume environments.

Nutrient-OMICS coupling approach reveals unexpected actors for atmospheric carbon sequestration

Sharma and colleagues investigated the role of clay minerals in strengthening the marine biological pump.

Distribution and fate of the lithogenic and anthropogenic aerosols over the Mediterranean and Black Seas

Shelley and co-authors propose an extensive coverage of the distribution and fate of the lithogenic and anthropogenic aerosols over the Mediterranean and Black Seas.

Rechercher