Benthic nepheloid layer global compilation: an invaluable resource for GEOTRACES researchers

Models simulating any oceanic tracer biogeochemistry require a good depiction of the particle distribution, key to incorporating properly scavenging-remineralization processes. However, this kind of description is still rare.

Gardner and co-workers (2018, see reference below) are providing an exceptional compilation of the Benthic Nepheloid Layers (BNL) around the world.

BNLs have been mapped using 6,392 full-depth profiles of beam attenuation made during 64 cruises using their transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Not surprisingly, intense BNLs are observed where eddy kinetic energy (EKE, see figure below) in overlying waters, mean kinetic energy 50 m above bottom, and energy dissipation in the bottom boundary layer are the highest. Therefore, intense BNLs are observed in the Western North Atlantic, the Argentine Basin, parts of the Southern Ocean and areas around South Africa. Contrastingly, most of the Pacific, Indian, and Atlantic central basins do not display strong sediment resuspension.

 18 Gardner
Figure: Map of log of surface eddy kinetic energy (EKE) based on satellite observations during 2002–2006 with transmissometer station locations superimposed.
Please click here to view the figure larger.

Reference:

Gardner, W.D., M.J. Richardson, A.V. Mishonov. Global Assessment of Benthic Nepheloid Layers and Linkage with Upper Ocean Dynamics. Earth and Planetary Science Letters 482 (2018) 126–134. https://doi.org/10.1016/j.epsl.2017.11.008

Latest highlights

Science Highlights

Rare Earth Elements and neodymium isotopes as tracers in the Mediterranean Sea

Garcia-Solsona and co-workers analysed 9 seawater stations around the central Mediterranean Sea…

02.07.2020

Science Highlights

A new model simulates the speciation and dispersion of hydrothermal iron

Roshan and collaborators present new observations of dissolved iron and its physical speciation in the South Pacific

10.06.2020

Science Highlights

Mechanisms driving biological CO2 drawdown in the Subarctic Pacific unraveled

Nishioka and co-authors compiled comprehensive data sets of iron and macronutrients covering the whole subarctic Pacific…

04.06.2020

Science Highlights

The biogeochemical ventures of dissolved iron and manganese across the Arctic Ocean

The spatial distributions and biogeochemical cycling of dissolved Fe (dFe) and dissolved manganese (dMn) across the Arctic Ocean were established during summer and fall 2015. The Canadian GEOTRACES transect extended from the Canada Basin (CB) to the Labrador Sea (LS) via the Canadian Arctic Archipelago (CAA). The surface, subsurface and deep water distributions for both […]

15.05.2020

Rechercher