Why did the concentration of atmospheric carbon dioxide rise so much and so quickly during the last deglaciation? 

During the Last Glacial Maximum, the deep southern Pacific waters were stratified, efficiently accumulating old, CO2 rich waters. Basak and co-authors (2018, see reference below) measured neodymium isotopes in sediment cores that clearly show that when these deep waters became less stratified as the climate warmed they released their carbon which could escape to the atmosphere…what a tempting prospect and beautiful teaser for the forthcoming PAGES-GEOTRACES workshop of December 2018!

 18 Pahnke l
Figure: View from RV Polarstern while collecting sediment samples used in the study by Basak et al. Read more at: https://phys.org/news/2018-02-scientists-theory-role-south-pacific.html#jCp
Credit: Dr. Katharina Pahnke


Basak, C., Fröllje, H., Lamy, F., Gersonde, R., Benz, V., Anderson, R. F., Molina-Kescher, M., Pahnke, K. (2018). Breakup of last glacial deep stratification in the South Pacific. Science, 359(6378), 900–904. http://doi.org/10.1126/science.aao2473

Read more also at: https://phys.org/news/2018-02-scientists-theory-role-south-pacific.html#jCp


Latest highlights

Science Highlights

Deep sea lithogenic weathering a source of iron colloids for the ocean

Homoky and co-workers determined the isotope composition of dissolved iron profiles in shallow surface sediments of the South Atlantic Uruguayan margin…


Science Highlights

Adding external sources allow a better simulation of the oceanic rare earth elements cycles

Oka and colleagues demonstrate that the global distribution of REE can be reproduced by considering the internal cycle associated with reversible scavenging and external REEs inputs around continental regions.


Science Highlights

First direct measurements of luxury iron uptake in natural phytoplankton communities: surprising results!

This study demonstrates the importance of biology and ecology to understanding iron biogeochemistry.


Science Highlights

Air-sea gas disequilibrium drove deoxygenation of the deep ice-age ocean

This study provides one of the first mechanistic explanations for Last Glacial Maximum deep ocean deoxygenation.