Arctic mercury export flux with marine particles higher than anticipated

In the ocean, the residence time of mercury (Hg), is largely driven by two removal mechanisms: evasion to the atmosphere and downward export flux with settling particles. The later was particularly poorly constrained in the Arctic Ocean, as was the Hg burial rate into the sediment.

Using samples collected during the German GEOTRACES TransArcII (GN04) and the U.S. Arctic GEOTRACES (GN01) cruises in August−October 2015, authors estimated the particulate mercury (Hgp) export flux in the central Arctic Ocean and the outer shelf. These new data allowed them to i) calculate Hgp normalized to suspended particulate matter and partition coefficient for the Arctic Ocean; ii) use Hgp and 234Th observations to estimate the Hgp export flux based on the 234Th/238U disequilibrium and iii) re-estimate the net Hg burial rates from Arctic sediment cores.

This comprehensive study of the Arctic particulate Hg behaviour led to the estimate of 156 Mg year−1 Hgp export from the surface ocean and 28 Mg year−1 Hg burial rate, fluxes extrapolated to the entire Arctic Ocean, including the inner shelf.

Figure: Arctic mercury mass balance (fluxes in tons per year).

Reference:

Tesán Onrubia, J. A., Petrova, M. V., Puigcorbé, V., Black, E. E., Valk, O., Dufour, A., Hamelin, B., Buesseler, K., Masqué, P., Le Moigne, F. A. C., Sonke, J. E., Rutgers van der Loeff, M. Heimbürger-Boavida, L.-E. (2020). Mercury Export Flux in the Arctic Ocean Estimated from 234 Th/ 238 U Disequilibria. ACS Earth and Space Chemistry, acsearthspacechem.0c00055. DOI: https://doi.org/10.1021/acsearthspacechem.0c00055

Latest highlights

Science Highlights

The Arctic Ocean is a net source of micronutrients toward the North Atlantic through the gateway of Fram Strait

They present a flux budget for micronutrient exchange between the Arctic and the North Atlantic Ocean.

18.05.2022

Science Highlights

A better insight into parameters that control particle flux in the ocean

They compiled full ocean-depth size-fractionated particle concentration and composition data from three recent U.S. GEOTRACES cruises.

10.05.2022

Science Highlights

Confrontation of two models to constrain the hydrothermal iron contribution to the Southern Ocean export production

Tagliabue and his co-workers compare the hydrothermal dissolved iron simulated by both models.

21.04.2022

Science Highlights

North African dust is an important (but not dominant) source of iron to the Gulf of Mexico

They have combined new GEOTRACES compliant data to estimate how important North African dust could be as a source of iron to the Gulf of Mexico.

19.04.2022

Rechercher