Latest recommendations for successful analysis of dissolved osmium in seawater

Analysis of osmium in seawater presents complex challenges, linked to its very low (femtomolar) concentrations and multiplicity of possible oxidation states. Early insights were provided by Karl Turekian’s group at Yale where it was realized that osmium tends to concentrate both in oxidizing Fe-Mn nodules and in reducing organic-rich marine sediments. Efforts to directly measure the seawater osmium isotope composition and concentration began in earnest following the developments in early 1990s of highly sensitive N-TIMS and ICP-MS. Initial techniques that attempted to pre-concentrate osmium using column chromatography (Minoru Koide and collaborators at Scripps Institution of Oceanography) and co-precipitation (Mukul Sharma and collaborators at Caltech) were only partially successful due a lack of equilibrium between seawater and tracer osmium. A breakthrough came in 1998, when Sylvain Levasseur in Claude Allegre’s group in Paris simultaneously oxidized and pre-concentrated osmium in liquid bromine at 90°C. Oliver Woodhouse and coworkers at the Woods Hole Oceanographic Institution developed another procedure of directly distilling osmium from seawater and sparging it into an ICP-MS. These procedures appeared robust but yielded conflicting results. Subsequent work at Dartmouth (Sharma and collaborators) and Nancy (Maxence Paul and collaborators) has demonstrated that much higher temperatures and longer durations are required to fully equilibrate sample and tracer osmium. The complexities involved in storage of seawater osmium have also become apparent (see link to Eos report below). These findings resulted from U.S. National Science Foundation funded GEOTRACES intercalibration efforts in the Pacific and Atlantic oceans. The new insights call into question much of the earlier data on the marine distribution of this important biogeochemical tracer and raise new issues: How actively is osmium cycled in the water column? What is the relative importance of the various sources? How important are anthropogenic inputs? The workshop on  “Dissolved Osmium Isotope Analysis” held at the Palais de Congrès de Montreal on 24 June 2012 before the annual Goldschmidt Conference summarized the latest recommendations for successful seawater osmium analyses.

 

Reference:

Peucker-Ehrenbrink, B., M. Sharma, and L. Reisberg (2013), Recommendations for Analysis of Dissolved Osmium in Seawater, Eos Trans. AGU, 94(7), 73. Click here to access the Eos Workshop report.

Latest highlights

Overlooked riverine contributions of dissolved neodymium and hafnium to the Amazon estuary and oceans

Xu and colleagues investigated the isotopic composition of dissolved neodymium and hafnium along the entire salinity gradient of the Amazon estuary.

Pulling back the veil on reversible scavenging of lead

This work further contains the role that reversible scavenging may play in the cycling of lead in the ocean, an ever-evolving global experiment where lead contamination can be tracked in real-time.

Extremely high radioactive levels in the manganese nodules

Volz and co-authors demonstrate that radioisotopes in the manganese nodules mostly exceed exempt activity levels…

The North Pacific Ocean, a key actor for the zinc oceanic cycle

Sieber and his colleagues lift the veil on some of the mechanisms that control the behavior of zinc in the Pacific Ocean, and more globally.

Rechercher