16 Frings

Amazingly detailed compilation of the silicon cycle, with an emphasis on the oceanic silicon isotope budget

Although this article is not resulting from GEOTRACES activity, its content is definitely GEOTRACES relevant. The authors constructed an up-to-date compilation of the continental silicon (Si) cycle, including the fate of Si isotopic composition in the different continental but also estuarine and marine solid and solutions.

This is a paper highly recommended by Catherine Jeandel, the GEOTRACES IPO science director.

16 Frings
Figure: Cartoon schematic of the modern day global Si cycle. The values show the magnitudes of the fluxes (in 1012 mol yr− 1) and their associated δ30Si values (in ‰). Typical fractionations (ε, ‰) associated with production of biogenic silica (BSi) and clay minerals are shown in the inset panels. Dotted lines indicate particulate fluxes; solid lines indicate solute fluxes or transformations. Source: Frings, et al., 2016, Chemical Geology.

Reference:

Frings, P.J., Fontorbe, G., Clymans, W., De La Rocha, C.L., Conley, D.J., 2016. The continental Si cycle and its impact on the ocean Si isotope budget. Chemical Geology 425, 12-36.doi:10.1016/j.chemgeo.2016.01.020

Latest highlights

Science Highlights

Volcanic emissions in the Southern Ocean: an efficient and unexpected source of iron for this remote area

This study suggests that volcanic emission can represent a significant source of bioavailable Fe to open ocean anaemic ecosystems.

20.09.2021

Science Highlights

Surprisingly heavy silicon isotopes in the surface and deep Arctic Ocean

Brzezinski and his colleagues report on a comprehensive study of the Arctic Ocean silicic acid concentrations and silicon isotopic composition…

14.09.2021

Science Highlights

Unique winter dataset of particulate and dissolved cadmium in the Indian sector of the Southern Ocean

Cloete and collaborators analysed particulate and dissolved cadmium at 7 stations in austral winter along a North South section off South Africa.

06.09.2021

Science Highlights

A new proxy for ocean iron bioavailability

The approach established and verified in this study, opens a new way for determining dissolved iron bioavailability in samples across the ocean.

23.07.2021

Rechercher