Air-sea gas disequilibrium drove deoxygenation of the deep ice-age ocean

Joint Science Highlight with US Ocean Carbon and Biogeochemistry (OCB).

During the Last Glacial Maximum (~20,000 years ago, LGM) sediment data show that the deep ocean had lower dissolved oxygen (O2) concentrations than the preindustrial ocean, despite cooler temperatures of this period increasing O2 solubility in sea water.

In a study published in Nature Geoscience, Cliff and her colleagues (2021, see reference below) provide one of the first explanations for glacial deoxygenation. The authors combined a data-constrained model of the preindustrial (PIC) and LGM ocean with a novel decomposition of O2 to assess the processes affecting the oceanic distribution of oxygen. The decomposition allowed for the preformed disequilibrium O2—the amount of oxygen that deviates from its solubility equilibrium value when at the surface—to be tracked, along with other contributions such as the O2 consumed by bacterial respiration of organic matter. In the preindustrial ocean, a third of the subsurface oxygen deficit was a result of disequilibrium rather than oxygen consumed by bacteria. This contradicts previous assumptions (Figure 1a). Nearly 80% of the disequilibrium resulted from upwelling waters, depleted in O2 due to respiration, not fully equilibrating before re-subduction into the ocean interior. This effect was even greater during the LGM (Figure 1b). The authors attributed this largely to the widespread presence of sea ice—which acts as a cap on the surface preventing the water from gaining oxygen from the atmosphere—in the ocean around Antarctica, with a smaller contribution from iron fertilization.

This study provides one of the first mechanistic explanations for LGM deep ocean deoxygenation. As the ocean is currently losing oxygen due to warming, the effect of other processes, including sea ice changes, could prove important for understanding long-term ocean oxygenation changes.

Figure: a) Whole ocean inventory of the O2 components in the preindustrial control (PIC): total O2 (O2); the preformed components equilibrium O2 (O2 equilibrium), physical disequilibrium O2 (O2 diseq phys) and biologically-mediated disequilibrium (O2 diseq bio); and O2 respired from soft-tissue (O2 soft). b) The difference in whole ocean inventory of O2 components between the LGM and PIC simulations.

Reference:

Cliff, E., Khatiwala, S., & Schmittner, A. (2021). Glacial deep ocean deoxygenation driven by biologically mediated air–sea disequilibrium. Nature Geoscience, 14(1), 43–50. DOI: https://doi.org/10.1038/s41561-020-00667-z

Latest highlights

Science Highlights

Tracing dust deposition with aluminium and silicate at a resolution never reached before

Benaltabet and his colleagues propose a study of the dissolved aluminium and silicate fate in the Gulf of Aqaba (Red Sea).

24.01.2023

Science Highlights

Actinium-227 distribution traces at least three processes in the North Atlantic Ocean

Le Roy and colleagues report an oceanic section of Actinium-227 in the North Atlantic Ocean.

23.01.2023

Science Highlights

Do you want to know more about iron and its isotopes? This review is for you!

Authors present a comprehensive review of iron and iron isotope sources, internal cycling, and sinks in the ocean.

17.01.2023

Science Highlights

Different fates of four poorly soluble trace elements in the Pacific Ocean

Zheng and co-authors present the full-depth distributions of aluminum, lead, manganese and copper in the western South Pacific.

24.11.2022

Rechercher