A new model of the oceanic aluminium distribution

Taking into account most of the parameters that govern any trace element’s oceanic behaviour is a challenge, given their number and complexity.

Marco van Hulten and co-workers (2014, see reference below) propose here the most complete model ever written for the oceanic aluminium (Al) distribution. In addition to atmospheric input -which was the only term constraining the Al distribution in a preceding model, see van Hulten et al., 2013-, circulation, sediment re-suspension and biological incorporation by diatoms are considered in this new scheme.

These new sources and sinks are significantly improving the simulated distribution, more specifically a sediment source of Al in the bottom waters of the Northern Atlantic and the velocity fields.

14 vanHulten low

Figure: The dissolved aluminium concentration (nM) of a global model simulation of aluminium. The circles are the observations. The sources in the model comprise the release of Al from dust and from resuspended deep-ocean sediments, the latter depending on the bottom Si concentration. Al is removed by reversible scavenging by biogenic silica. (This figure may be reused, changed and redistributed according to Creative Commons BY-SA. Click here to view the figure larger.)



Van Hulten, M. M. P., Sterl, A., Tagliabue, A., Dutay, J.-C., Gehlen, M., de Baar, H. J. W., & Middag, R. (2013). Aluminium in an ocean general circulation model compared with the West Atlantic GEOTRACES cruises. Journal of Marine Systems, 126, 3–23. doi: 10.1016/j.jmarsys.2012.05.005 Click here to access the paper.

Van Hulten, M. M. P., Sterl, A., Middag, R., de Baar, H. J. W., Gehlen, M., Dutay, J.-C., & Tagliabue, A. (2014). On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium. Biogeosciences, 11(14), 3757–3779. doi:10.5194/bg-11-3757-2014 Click here to acces the paper.

Latest highlights

MOTES: a new facility designed for trace element sampling in seawater

Zhang and a group of engineers and researchers from Shanghai and Qingdao are presenting a modular trace element sampling facility.

A thorough estimate of the hydrothermal plumes on neodymium concentration and isotope oceanic cycles

Basak and co-workers investigated the influence of particulate matter on neodymium distributions in the Southern East Pacific Rise Hydrothermal Plume.

What are the drivers of the distributions of cadmium, nickel, zinc, copper and cobalt, manganese and aluminium in the Atlantic Ocean? Two papers are tackling this issue

Chen and co-authors reveal that the distributions of dissolved tracers at depth in the South Atlantic are predominantly controlled by the mixing of North Atlantic Deep Water and waters of Antarctic origin…

Disentangling the sources and transport of iron in the Southern Ocean using a water mass mixing model analysis

Traill and co-workers used an extended optimum multiparameter analysis water‐mass mixing model to determine the interplay between physical and biological processes, and sources/sinks driving dissolved iron distributions…