A new model of the oceanic aluminium distribution

Taking into account most of the parameters that govern any trace element’s oceanic behaviour is a challenge, given their number and complexity.

Marco van Hulten and co-workers (2014, see reference below) propose here the most complete model ever written for the oceanic aluminium (Al) distribution. In addition to atmospheric input -which was the only term constraining the Al distribution in a preceding model, see van Hulten et al., 2013-, circulation, sediment re-suspension and biological incorporation by diatoms are considered in this new scheme.

These new sources and sinks are significantly improving the simulated distribution, more specifically a sediment source of Al in the bottom waters of the Northern Atlantic and the velocity fields.

14 vanHulten low

Figure: The dissolved aluminium concentration (nM) of a global model simulation of aluminium. The circles are the observations. The sources in the model comprise the release of Al from dust and from resuspended deep-ocean sediments, the latter depending on the bottom Si concentration. Al is removed by reversible scavenging by biogenic silica. (This figure may be reused, changed and redistributed according to Creative Commons BY-SA. Click here to view the figure larger.)

 

References:

Van Hulten, M. M. P., Sterl, A., Tagliabue, A., Dutay, J.-C., Gehlen, M., de Baar, H. J. W., & Middag, R. (2013). Aluminium in an ocean general circulation model compared with the West Atlantic GEOTRACES cruises. Journal of Marine Systems, 126, 3–23. doi: 10.1016/j.jmarsys.2012.05.005 Click here to access the paper.

Van Hulten, M. M. P., Sterl, A., Middag, R., de Baar, H. J. W., Gehlen, M., Dutay, J.-C., & Tagliabue, A. (2014). On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium. Biogeosciences, 11(14), 3757–3779. doi:10.5194/bg-11-3757-2014 Click here to acces the paper.

Latest highlights

East-West contrasting fate and anthropogenic inputs for dissolved trace metals in the Subarctic Pacific Ocean

Chan and co-authors report the full-depth distribution of dissolved nickel, copper, zinc, and cadmium in the North Pacific Ocean.

Comprehensive quantification of the rare earth element cycle in the northwest Pacific Ocean

Cao and co-authors investigate dissolved rare earth elements and the factors controlling their distributions in the northwest Pacific Ocean.

Iron and zinc isotopes disentangle the anthropogenic, natural and wildfire sources of aerosols over the North and Equatorial Pacific Ocean

Bunnell and co-authors analysed aerosol iron and zinc isotopic compositions along the North Pacific GEOTRACES GP15 section (Alaska-Tahiti).

Contribution of sandy beaches to the oceanic silica cycle

This paper calls into question the commonly accepted idea of an oceanic silicon cycle in equilibrium.

Rechercher