Arsenic detoxification by phytoplankton reveals that arsenic species could be good proxies of phosphorus limitation

Some phytoplankton species have the capacity to modify surface water arsenic speciation, inhibiting its toxicity. Such detoxification is operative in oligotrophic waters when phosphate concentrations are below those for arsenic (As). During the US GEOTRACES North Atlantic transect, fine determination of As speciation allowed establishing the potential use of these detoxification products as indicators of phosphorus (P) limitation. The new As indicator has been used to assess P-limitation in the North Atlantic, improving on the contradictory assessments using the conventional proxies. The coupled relationship between As and P is a classic example of a biogeochemical cycle, and how such relationship can be used as a tool in oceanography.

Wurl_low

Figure: Relationship between inorganic phosphate, arsenite (As3+) and alkaline phosphate activity (APA), the latter being an enzyme to cleave organic-bound phosphate and typically increasing with decreasing inorganic phosphate. Arsenate (As5+) uptake by phytoplankton increases under low phosphate availability due to the chemical similarities between them. Detoxification includes reduction and excretion of As3+, consequently indicating moderate (orange background) and extreme (red background) limitation of phosphate. No phosphate limitation occurs if As3+ levels are below 1 nmol L-1 (green background).

 

Reference:

Wurl, O., L. Zimmer, and G.A. Cutter. 2013. Arsenic and phosphorus biogeochemistry in the ocean: Arsenic species as proxies for P-limitation. Limnol. Oceanogr. 58: 729-740. Click here to access the paper.

Latest highlights

High levels of anthropogenic lead in the Indian Ocean

Yadav and her colleagues provide comprehensive insights into the distribution and sources of dissolved lead in the Indian Ocean.

Elevated methylmercury level in Arctic rain and aerosol linked to oceanic dimethylmercury emissions

He and colleagues highlight a previously underappreciated pathway of mercury transport, underscoring its significance to human health.

Unveiling the Complexity of Lead Distribution in the Pacific Ocean: Insights from the GEOTRACES GP15 Transect

This recent study by Jiang and colleagues investigates the distribution and sources of lead in the Pacific Ocean.

Organic matter export rates along a North-South Pacific Ocean section: what three estimating methods tell us

Quay and his colleagues present estimates of the organic matter export rate along the GEOTRACES GP15 cruise section.

Rechercher