Particle distribution in repeated ocean sections and sediment resuspension

This is the first compilation of an expansive data base of transmissometer data on a decadal period of time. More than 7376 stations have been analyzed for “cp” value, a proxy for particle concentrations, by Gardner and co-workers (2018, see reference below). Full water-column sections confirm that particle concentrations are higher in surface waters, decrease rapidly below 200 m, most often down to the seafloor. However, cloudy near-bottom waters, known as “benthic nepheloid layers”, are generated by sediment erosion and resuspension at specific geographic areas. These locations are directly linked to energetic surface dynamics that produce regions of high Eddy Kinetic Energy (EKE). More fascinating, however, is the decadal persistence of this close surface-to-deep connection. We invite you to read this very interesting article!

18 Gardner2Figures: (A) Map of log of surface eddy kinetic energy (modified from Dixon et al., 2011) with cp transects indicated. (B) Section of cp (proxy for particle concentration) along 53° W in spring, 2012 in the Western North Atlantic. Black contours are dissolved oxygen (µmol kg-1). Click here to view the figure larger.

Reference:

Gardner, W. D., Mishonov, A. V., & Richardson, M. J. (2018). Decadal Comparisons of Particulate Matter in Repeat Transects in the Atlantic, Pacific, and Indian Ocean Basins. Geophysical Research Letters. http://doi.org/10.1002/2017GL076571

Latest highlights

The tumultuous life of the Antarctic Circumpolar Current over 5,3 million years, including focus on the glacial-interglacial forcing!

To reconstruct the strength of the Antarctic Circumpolar Current, the authors used sediment records from the pelagic central and remote South Pacific.

North-South radium-228 section in the Pacific Ocean

Moore and colleagues present results from radium-228 along the U.S. GEOTRACES Pacific Meridional Transect (GP15).

Strong lithogenic imprints in the Indian Ocean waters

Ueki and co-authors reported the first sectional distributions of zirconium, hafnium and niobium along a north-south track in the Indian Ocean.

The development of the modern Antarctic Circumpolar Current occurred much later than previously thought!

This study is challenging the belief that the onset of the Antarctic Circumpolar Current was solely triggered by the opening and deepening of Southern Ocean Gateways.

Rechercher