Using ICPMS/MS to determine manganese, iron, nickel, copper, zinc, cadmium and lead concentrations on less than 40ml of seawater

Jackson and co-workers (2018, see reference below) first did a classical offline preconcentration of small seawater aliquots using a SeaFast system. More innovative is the use of a state of the art inductively coupled plasma – tandem mass spectrometry (ICPMS/MS) to analyse the eluate. Such tool combines two mass-selecting quadrupoles separated by an octopole collision/reaction cell. The collision/reaction cell was pressurized with O2 gas for the analysis of manganese (Mn), nickel (Ni), copper (Cu), cadmium (Cd) and lead (Pb) and H2 gas for the analysis of iron (Fe) and zinc (Zn), which removed common interferences (e.g. ArO+ on 56Fe and MoO+ on Cd)… and the detection limits were less than 0.050 nmol/l, which is extremely low!

18 Jackson
Figure:
A schematic diagram of the preconcentration and analysis of Mn, Fe, Ni, Cu, Zn, Cd and Pb in seawater samples. Seawater samples are preconcentrated using the seaFAST preconcentration system, and analysed on an ICP-MS/MS pressurized with either O2 gas (Mn, Ni, Cu, Cd and Pb) or H2 gas (Fe, Zn). Click here to view the figure larger.

Reference:

Jackson, S. L., Spence, J., Janssen, D. J., Ross, A. R. S., & Cullen, J. T. (2018). Determination of Mn, Fe, Ni, Cu, Zn, Cd and Pb in seawater using offline extraction and triple quadrupole ICP-MS/MS. Journal of Analytical Atomic Spectrometry, 33(2), 304–313. http://doi.org/10.1039/C7JA00237H

 

Latest highlights

Contrasting organic carbon  remineralisation rates revealed by particulate excess barium in the North Pacific and South China Sea

Yuan and co-workers quantify organic carbon remineralisation in the twilight zone of the China Sea using particulate excess barium as a proxy…

Sedimentary controls on seawater nickel distributions and nickel isotope compositions: a two steps study

Nickel isotopic mass balance in the ocean stands among the less understood so far…

23 million years of productivity reconstructed in the Central Pacific Ocean using past and modern proxies

Using diverse geochemical proxies, Chu and colleagues analysed an iron–manganese crust to reconstruct central Pacific productivity over the past 23 million years.

Lead isotopes reveal that hydrothermal variability is driven by Sea‐Level change and transient magmatism

De and colleagues present the first millennial-scale reconstruction of hydrothermal variability at a mid-ocean ridge using lead isotopes from iron-manganese coatings…

Rechercher