Unprecedented set of dissolved manganese data in the North Atlantic Ocean (US GEOTRACES cruise)

Manganese (Mn) is an essential nutrient for biological growth. In the ocean, manganese distribution is sensitive to several processes: redox conditions, photochemistry, biological activity, abiotic scavenging, and also eolian, hydrothermal and sedimentary sources. All of them are conditioning the concentration of dissolved Mn in the ocean vertical profiles as shown in the east-west ocean section proposed by Wu and co-workers across the Subtropical North Atlantic Ocean (see figure below).

Their simple model calculation suggests that the main actors determining the distribution are:

  • In the surface waters (0-40m): eolian Mn(II) deposition and in-situ photochemical reduction of dioxide of manganese (MnO2).
  • Below the mixed layer (40-200m): the intensity of sunlight available for in-situ MnO2 photochemical reduction.
  • Between 200 and 700 m: regeneration preformed Mn in the source water and lateral inputs from hydrothermal and sedimentary sources.
  • Below 700 m: lateral inputs from hydrothermal and sedimentary sources become predominant.

2014 Wu l

Figure. Vertical distribution of manganese (Mn) along a section across Subtropical North Atlantic. Warm colours (red, orange, etc.) indicate high concentrations. Click here to view the figure larger.

Reference:

Wu, J., Roshan, S., & Chen, G. (2014). The distribution of dissolved manganese in the tropical–subtropical North Atlantic during US GEOTRACES 2010 and 2011 cruises. Marine Chemistry, 166, 9–24. doi:10.1016/j.marchem.2014.08.007. Click here to access the paper.

Latest highlights

23 million years of productivity reconstructed in the Central Pacific Ocean using past and modern proxies

Using diverse geochemical proxies, Chu and colleagues analysed an iron–manganese crust to reconstruct central Pacific productivity over the past 23 million years.

Lead isotopes reveal that hydrothermal variability is driven by Sea‐Level change and transient magmatism

De and colleagues present the first millennial-scale reconstruction of hydrothermal variability at a mid-ocean ridge using lead isotopes from iron-manganese coatings…

Long-range transport of iron via the Agulhas Current and counter-current: a boon for the phytoplankton

Authors establish that significant iron fertilisation via the Agulhas current explains the Indian Subantarctic blooms…

Hydrothermal activity detected above the ultra-slow South West Indian Ridge, using a multi-proxy approach

Baudet and colleagues demonstrate the occurrence of hydrothermal venting on the Southwest Indian Ridge…

Rechercher