Slow-spreading ridges could be major oceanic iron contributor

A large dissolved iron- and manganese-rich plume has been detected by Saito and co-authors over the slow-spreading southern Mid-Atlantic Ridge. This discovery calls into question the assumption that deep-sea hydrothermal vents along slow-spreading ridges were negligible contributors to the oceanic iron inventory. This result urges reassessment and a likely increase of the contribution of hydrothermal vents to the supply of iron.

13 Saito Noble

Figure: A zonal section of dissolved iron in the South Atlantic. The higher iron concentrations (in warm colours red, orange) reveal a large plume at ∼2,900 m depth and 2 km in height.
Please click here to view the figure larger.

 

Reference:

Saito, Mak A., Abigail E. Noble, Alessandro Tagliabue, Tyler J. Goepfert, Carl H. Lamborg, William J. Jenkins (2013) Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source Nature Geoscience 6 (9), 775-770 DOI: 10.1038/ngeo1893

Latest highlights

Coupling copper and neodymium data highlights the importance of the margin sources for the copper oceanic cycle

Lemaitre and co-workers analysed the dissolved concentrations and isotopes along the GEOVIDE (GA01) section in the North Atlantic Ocean.

High levels of anthropogenic lead in the Indian Ocean

Yadav and her colleagues provide comprehensive insights into the distribution and sources of dissolved lead in the Indian Ocean.

Elevated methylmercury level in Arctic rain and aerosol linked to oceanic dimethylmercury emissions

He and colleagues highlight a previously underappreciated pathway of mercury transport, underscoring its significance to human health.

Unveiling the Complexity of Lead Distribution in the Pacific Ocean: Insights from the GEOTRACES GP15 Transect

This recent study by Jiang and colleagues investigates the distribution and sources of lead in the Pacific Ocean.

Rechercher