Has the role of atmospheric dust as a control on productivity in oligotrophic regions been overestimated?

Dust particles settling into the surface of open ocean environments are for years assumed to provide nutrients to these distant nutrient-limited areas.

Torfstein and Kienast (2018, see reference below) present a unique high-resolution coupling between dust concentrations (hourly resolution) and chlorophyll-a concentrations (daily time scale resolution) across a 4-year period in the deep, nutrient-poor water column of the north Red Sea, which seriously questions this hypothesis.

This long time series study reveals that there is no correlation between dust and surface chlorophyll-a concentrations, regardless of the time of year, or the possible lags between the dust settling and the oceanic response.

The authors conclude that the role of atmospheric dust as a control on productivity could have been previously overestimated.

18 Torfstein

Figure: The study took place in (a) the Gulf of Aqaba, northern Red Sea, and combined monthly and daily resolved records of  chlorophyl-a concentrations sampled at (b) the Interuniversity Institute for Marine Sciences (IUI) and station A (29°280N, 34°560E, water depth 700 m), respectively. The distance between the two sites is approximately 4 km. Dust time series were recorded at the IUI and its vicinity at weekly, daily and hourly resolution.  (c) A comparison between water temperatures and vertical chlorophyll-a (chl-a) concentrations at station A (monthly resolution), daily and monthly chl-a surface concentrations (μg/L), and dust concentrations (μg/m3) at a weekly, 6 hour and 1 hour time resolution, between January 2012 and August 2016, imply that no statistically significant correlation exists between dust patterns and chl-a concentrations. Click here to view the figure larger.

Reference:

Torfstein, A., & Kienast, S. S. (2018). No correlation between atmospheric dust and surface ocean chlorophyll-a in the oligotrophic Gulf of Aqaba, northern Red Sea. Journal of Geophysical Research: Biogeosciences, 123. https://doi.org/10.1002/2017JG004063

Latest highlights

Conservative behavior of radiogenic neodymium isotopes in the South Pacific interior

Zhang and co-workers present full-depth measurements of εNd and Nd concentrations along the GP21 transect across the South Pacific basin…

Neodymium isotopes trace past Antarctic Intermediate Water circulation in the Arabian Sea

Shukla and co-authors reconstruct ventilation in the Northwestern Indian Ocean…

Regional zinc cycling in the Indian Ocean

Chinni and his colleagues present dissolved zinc distributions across the Arabian Sea, Bay of Bengal and southern tropical Indian Ocean…

Contrasting organic carbon  remineralisation rates revealed by particulate excess barium in the North Pacific and South China Sea

Yuan and co-workers quantify organic carbon remineralisation in the twilight zone of the China Sea using particulate excess barium as a proxy…

Rechercher