Rare Earth Elements and neodymium isotopes as tracers in the Mediterranean Sea

Garcia-Solsona and co-workers (2020, see reference below) analysed 9 seawater stations around the central Mediterranean Sea (MS) to clarify the relative importance of external sources, vertical (biogeochemical) processes and lateral water mass transport in controlling Rare Earth Elements (REE) and neodymium isotopic composition (εNd) distributions.

Their results clearly identify the influence of continental input from the western Italian coast to the Tyrrhenian surface waters, marked by a negative correlation of surface light REE enrichment with offshore distance.

Contrastingly, a reasonable conservative behaviour of heavy REE and εNd is observed in the Central MS. This contrast induces a decoupling of [Nd] and εNd in all water masses of the central MS below the thermocline.  

The conservativity of heavy REE and εNd as water mass mixing tracers was successfully established using an Optimum Multi-Parameter Analysis (OMPA) and confirming that the distributions of heavy REE and εNd signals are determined by mixing of the water masses present in the region: Modified Atlantic Water (MAW), Levantine Intermediate Water (LIW), Eastern Mediterranean Deep Water (EMDW) and Western Mediterranean Deep Water (WMDW). From their results, authors further suggest that εNd helps traditional oceanographic tracers in better defining the intrusion of EMDW through the Strait of Sicily to the western Mediterranean basin.

HiRes
Figures: The bottom figure is a map of the Central Mediterranean Sea with sampled stations in coloured dots. The dashed green line indicates the NW-SE section used to display the eNd values represented in the figure above. Changes in eNd values may be ascribed to the presence of different water masses; for example, a tongue of radiogenic LIW is clearly delineated from its eastern origin to the western basin.

Reference:

Garcia-Solsona, E., Pena, L. D., Paredes, E., Pérez-Asensio, J. N., Quirós-Collazos, L., Lirer, F., & Cacho, I. (2020). Rare earth elements and Nd isotopes as tracers of modern ocean circulation in the central Mediterranean Sea. Progress in Oceanography, 185, 102340. DOI: https://doi.org/10.1016/J.POCEAN.2020.102340

Latest highlights

Contrasting organic carbon  remineralisation rates revealed by particulate excess barium in the North Pacific and South China Sea

Yuan and co-workers quantify organic carbon remineralisation in the twilight zone of the China Sea using particulate excess barium as a proxy…

Sedimentary controls on seawater nickel distributions and nickel isotope compositions: a two steps study

Nickel isotopic mass balance in the ocean stands among the less understood so far…

23 million years of productivity reconstructed in the Central Pacific Ocean using past and modern proxies

Using diverse geochemical proxies, Chu and colleagues analysed an iron–manganese crust to reconstruct central Pacific productivity over the past 23 million years.

Lead isotopes reveal that hydrothermal variability is driven by Sea‐Level change and transient magmatism

De and colleagues present the first millennial-scale reconstruction of hydrothermal variability at a mid-ocean ridge using lead isotopes from iron-manganese coatings…

Rechercher