Rare Earth distribution and pattern anomalies in the Solomon Sea

The Solomon Sea is surrounded by high and intensively weathered islands. Its complex topography and hydrography make this area a potential source of trace elements to the waters flowing through it. Dissolved rare earth elements (DREE) analysis of more than 150 samples collected in the framework of the PANDORA cruise (along GEOTRACES GP12 section) showed that DREE maxima reveal significant coastal effects at some locations, consistent with dissolved aluminum (Al) and manganese (Mn) data, enrichments mostly observed in the exiting Straits and along the island coasts. A box model allows calculating and discussing a net enrichment of the dissolved REE in the lower thermocline that further partially feeds the Equatorial Under Current cold tongue. Positive Europium (Eu) anomalies* allow identifying the basaltic nature of the lithogenic enrichments.

19 Pham

Figure: Vertical profiles of the anomalies of Eu (Eu/Eu*) after normalization to the PAAS values, calculated following Bau et al. (2004), Bau et al. (1996). The red circles correspond the Coral Sea and Southern entrance of the Solomon Sea. Samples collected in waters flowing through four straits (Indispensable, Vitiaz, St George’s and Solomon), are colored with dark violet, black, green and dark blue, respectively.
*Eu anomaly reflects the relative variation of the Eu abundance compared to its REE neighbors: it is calculated a the ratio between the measured Eu concentration and the interpolated one between these neighbors. In this paper, positive Eu anomalies (≥1) were found whatever water mass type and sample location. The higher dEu anomalies (~1.3) at the surface likely reflect recent enrichments of basaltic material origin from surrounding volcanic islands (Grenier et al., 2013).

Reference:

Pham, V. Q., Grenier, M., Cravatte, S., Michael, S., Jacquet, S., Belhadj, M., Nachez, Y., Germineaud, C., Jeandel, C. (2019). Dissolved rare earth elements distribution in the Solomon Sea. Chemical Geology, 524, 11–36. DOI: https://doi.org/10.1016/J.CHEMGEO.2019.05.012

Bau, M., Koschinsky, A., Dulski, P., Heinz, J.R. (1996) Comparison of the Partitioning Behaviours of Yttrium, Rare Earth Elements, and Titanium between Hydrogenetic Marine Ferromanganese Crusts and Seawate. Geochimica et Cosmochimica Acta, Volume 60, Issue 10, May 1996, Pages 1709-1725 DOI: https://doi.org/10.1016/0016-7037(96)00063-4

Bau, M., Alexander, B., Chesley, J.T., Dulski, P., Brantley, S.L. (2004). Mineral dissolution in the Cape Cod aquifer, Massachusetts, USA: I. Reaction stoichiometry and impact of accessory feldspar and glauconite on strontium isotopes, solute concentrations, and REY distribution. Geochim. Cosmochim. Acta, DOI: http://doi.org/10.1016/j.gca.2003.08.015

Grenier, M., Jeandel, J.,  Lacan, L., Vance, D., Venchiarutti, C., Cros, A., Cravatte, S. (2013) From the subtropics to the central equatorial Pacific Ocean: Neodymium isotopic composition and rare earth element concentration variations. Journal of Geophysical Research: Oceans DOI: http://doi.org/10.1029/2012JC008239

Latest highlights

Oceanic lead concentrations and isotopes mapped using explainable machine learning

Using three machine learning models, Olivelli and her colleagues generated global climatologies of lead concentrations and isotopes…

Dissolved nickel sources: transformation and sinks in the Arabian Sea

Malla and co-authors present an extensive study of the distribution of dissolved nickel in the Arabian Sea.

Linking cadmium cycling to phosphate dynamics in the Indian Ocean: Evidence from GEOTRACES transects

Mishra and Singh determined cadmium and phosphate concentrations along 34 complete vertical profiles in the Indian Ocean.

New software enables global ocean biogeochemical modeling in Python

The newly designed tmm4py software makes biogeochemical modelling more widely accessible.

Rechercher