Particle distribution in repeated ocean sections and sediment resuspension

This is the first compilation of an expansive data base of transmissometer data on a decadal period of time. More than 7376 stations have been analyzed for “cp” value, a proxy for particle concentrations, by Gardner and co-workers (2018, see reference below). Full water-column sections confirm that particle concentrations are higher in surface waters, decrease rapidly below 200 m, most often down to the seafloor. However, cloudy near-bottom waters, known as “benthic nepheloid layers”, are generated by sediment erosion and resuspension at specific geographic areas. These locations are directly linked to energetic surface dynamics that produce regions of high Eddy Kinetic Energy (EKE). More fascinating, however, is the decadal persistence of this close surface-to-deep connection. We invite you to read this very interesting article!

18 Gardner2Figures: (A) Map of log of surface eddy kinetic energy (modified from Dixon et al., 2011) with cp transects indicated. (B) Section of cp (proxy for particle concentration) along 53° W in spring, 2012 in the Western North Atlantic. Black contours are dissolved oxygen (µmol kg-1). Click here to view the figure larger.

Reference:

Gardner, W. D., Mishonov, A. V., & Richardson, M. J. (2018). Decadal Comparisons of Particulate Matter in Repeat Transects in the Atlantic, Pacific, and Indian Ocean Basins. Geophysical Research Letters. http://doi.org/10.1002/2017GL076571

Latest highlights

Conservative behavior of radiogenic neodymium isotopes in the South Pacific interior

Zhang and co-workers present full-depth measurements of εNd and Nd concentrations along the GP21 transect across the South Pacific basin…

Neodymium isotopes trace past Antarctic Intermediate Water circulation in the Arabian Sea

Shukla and co-authors reconstruct ventilation in the Northwestern Indian Ocean…

Regional zinc cycling in the Indian Ocean

Chinni and his colleagues present dissolved zinc distributions across the Arabian Sea, Bay of Bengal and southern tropical Indian Ocean…

Contrasting organic carbon  remineralisation rates revealed by particulate excess barium in the North Pacific and South China Sea

Yuan and co-workers quantify organic carbon remineralisation in the twilight zone of the China Sea using particulate excess barium as a proxy…

Rechercher