Onboard analysis of dissolved zinc everywhere in the open ocean with a Lab on Valve (LOV) system of the size of a bottle of wine is becoming possible

Thanks to the work of Maxime Grand and collaborators (2016, see reference below), it is now possible to analyse dissolved zinc (DZn) on board, from any kind of seawater using a “Lab On Valve (LOV)” method. For the first time, automated matrix removal, extraction of the target element, and fluorescence detection have been performed within a miniaturized flow manifold. The original flow programming is designed to pass sample through a minicolumn where the target analyte and other complexable cations are retained, while the seawater matrix is washed out. Once eluted, Zn is merged with a Zn selective fluorescent probe (FluoZin-3) prior to fluorescence detection in the LOV flow cell. This new shipboard method features a detection limit of 0.02 nM and a reagent consumption of 150 microliters per sample.

Successful comparison with GEOTRACES reference standards and analytical comparison with inductively coupled plasma mass spectrometry (ICPMS) eventually validate this beautiful, tiny and robust method.

16 Grandetal
Figure: A close up of the Lab-On-Valve (LOV) module, where microliter volumes of fluids are manipulated prior to fluorescence detection in the LOV flow cell (red circle). Right: Comparison of DZn profiles from the South Indian Gyre analysed via LOV and ICPMS.

Reference:

Grand, M. M., Chocholouš, P., Růžička, J., Solich, P., & Measures, C. I. (2016). Determination of trace zinc in seawater by coupling solid phase extraction and fluorescence detection in the Lab-On-Valve format. Analytica Chimica Acta, 923, 45–54. doi:10.1016/j.aca.2016.03.056

 

Latest highlights

East-West contrasting fate and anthropogenic inputs for dissolved trace metals in the Subarctic Pacific Ocean

Chan and co-authors report the full-depth distribution of dissolved nickel, copper, zinc, and cadmium in the North Pacific Ocean.

Comprehensive quantification of the rare earth element cycle in the northwest Pacific Ocean

Cao and co-authors investigate dissolved rare earth elements and the factors controlling their distributions in the northwest Pacific Ocean.

Iron and zinc isotopes disentangle the anthropogenic, natural and wildfire sources of aerosols over the North and Equatorial Pacific Ocean

Bunnell and co-authors analysed aerosol iron and zinc isotopic compositions along the North Pacific GEOTRACES GP15 section (Alaska-Tahiti).

Contribution of sandy beaches to the oceanic silica cycle

This paper calls into question the commonly accepted idea of an oceanic silicon cycle in equilibrium.

Rechercher