New revelations on boundary scavenging in the North Pacific

Thorium (Th) and protactinium (Pa) are very efficient tracers of particle dynamics in the ocean. More particularly, their relative distributions inform on the intensity of “scavenging”, in other words, the processes that remove dissolved elements from seawater by their precipitation or adsorption on particles. Thanks to 12 new profiles in the North Pacific, Hayes and co-authors observe a much larger relative difference in scavenging intensity between the Subtropical gyre and Subarctic Pacific gyre than within each of these regions. This effect is greater for Pa than for Th, likely reflecting the fact that biogenic silica, a phase produced by diatoms which has a strong affinity for Pa, is much more prevalent in the North. While highlighting the role of biogeography, the study also finds that in the deep ocean, manganese oxides, an inorganic phase, may play an additional role in Pa scavenging.

13 Hayes l

Figure: Simplified figure showing scavenging intensity in the Pacific Ocean.
Please click here to view the figure larger.

 

Reference:

Hayes, C. T., Anderson, R. F., Jaccard, S. L., François, R., Fleisher, M. Q., Soon, M., & Gersonde, R. (2013). A new perspective on boundary scavenging in the North Pacific Ocean. Earth and Planetary Science Letters, 369-370, 86–97. doi:10.1016/j.epsl.2013.03.008. Click here to access the paper.

Latest highlights

Science Highlights

Specific features characterize the dissolved iron distribution in the North Western Indian Ocean

Venkatesh Chinni and Sunil Kumar Singh propose dissolved iron profiles along two meridional transects realized during spring and fall seasons between the Arabian Sea and the sub-tropical western Indian Ocean…

07.01.2022

Science Highlights

Anthropogenic aerosol has become a dominant source of zinc in the deep water of the Northern South China Sea

Liao and colleagues determined zinc concentrations and isotope compositions in sinking particles collected in the Northern South China Sea…

24.11.2021

Science Highlights

An updated global ocean chromium biogeochemical cycle

Janssen and co-authors present an exhaustive compilation of ocean chromium data…

Science Highlights

Mercury stable isotopes constrain atmospheric pathways to the ocean

The study’s results hold promise that the implementation of anti-pollution measures under the Minamata Convention will likely result in a faster decrease of oceanic mercury levels than previously thought.

18.11.2021

Rechercher