Neural network as tools to replace oceanic data deficiencies

The importance of the cycle and speciation of nitrate and its isotopes (δ15N) in the ocean does not have to be demonstrated anymore. In an attempt to overcome the difficulty to compare the results of N/δ15N cycle models to a sparse set of data, Rafter and co-workers propose an original approach, based on artificial intelligence (AI) methods.

They use a compilation of 12,277 published δ15N measurements together with climatological maps of physical and biogeochemical tracers to create a surface to-seafloor map of δ15N using an ensemble of artificial neural networks (EANN). In other words, they train the seawater parameters to deduce a δ15N value at a given location and depth taking into accounts the climatological values. The strong correlation (R2 > 0.87) and small mean difference (< 0:05 ‰) between EANN-estimated and observed nitrate δ15N indicate that the EANN provides a good estimate of climatological nitrate δ15N without a significant bias. This climatology reveals large-scale spatial patterns in nitrate δ15N and allows the quantification of regional and basin-average oceanic values of nitrate δ15N. This work demonstrates how AI tools could help to address the unavoidable deficiency of data inherent to oceanic studies, keeping in mind that they require ab initio reasonable data coverage and mostly a good understanding of the parameter fate.

19 Rafter

Figure: (Top) Available nitrate δ15N (N isotopic composition) measurements at the time of publication. (Bottom) View of nitrate δ15N at 3500 m from two perspectives: the observed value (circles) and the model value (the contours).

Reference:

Rafter, P. A., Bagnell, A., Marconi, D., & DeVries, T. (2019). Global trends in marine nitrate N isotopes from observations and a neural network-based climatology. Biogeosciences, 16(13), 2617–2633. https://doi.org/10.5194/bg-16-2617-2019

Latest highlights

Dissolved nickel sources: transformation and sinks in the Arabian Sea

Malla and co-authors present an extensive study of the distribution of dissolved nickel in the Arabian Sea.

Linking cadmium cycling to phosphate dynamics in the Indian Ocean: Evidence from GEOTRACES transects

Mishra and Singh determined cadmium and phosphate concentrations along 34 complete vertical profiles in the Indian Ocean.

New software enables global ocean biogeochemical modeling in Python

The newly designed tmm4py software makes biogeochemical modelling more widely accessible.

Aerosol dissolution and iron isotope fractionation during atmospheric transport

Camin and co-authors present the iron concentrations and isotopic compositions of aerosols in previously undocumented areas of the Pacific Ocean.

Rechercher