Mercury stable isotopes constrain atmospheric pathways to the ocean


Mercury is one of the least concentrated trace elements in the ocean. Yet, the small seawater Hg levels biomagnify million times along the marine food chain, to reach harmful levels in predatory fish and their human consumers. Natural and anthropogenic Hg sources to the ocean remain ill-constrained. It took 10 years of development to come up with a method to measure Hg stable isotopes of seawater at subpicomolar levels. The Hg isotopic signatures in the ocean suggest the gas uptake (Hg0) and ionic deposition (HgII) are equally important (1:1), which is contrary than our current understanding (1:3)[1].  HgII deposition is likely overestimated by 2 to 3-fold, and the ocean receives less Hg overall. The study’s results hold promise that the implementation of anti-pollution measures under the Minamata Convention[2] will likely result in a faster decrease of oceanic Hg levels than previously thought.  

Figure: Summary of marine HgII deposition and Hg0 air-sea exchange fluxes. Gross fluxes (solid arrows, Mg y-1) are based on published model estimates. Hg0exchange is bidirectional. Marine Δ200Hg signatures of 0.04‰ indicate a relatively more important contribution of the atmospheric Hg0 end-member to marine Hg than current 3D models suggest. This indicates that either 3D model HgII deposition is likely overestimated (black dotted arrows, indicating 2–3 times lower, required to fit Δ200Hg data).

Reference:

Jiskra, M., Heimbürger-Boavida, L., Desgranges, M., Petrova, M., Dufour, A., Ferreira-Araujo, B., Masbou, J., Chmeleff, J., Thyssen, M., Point, D., Sonke, J. E. Mercury stable isotopes constrain atmospheric sources to the ocean. Nature, https://doi.org/10.1038/s41586-021-03859-8


[1] https://www.unep.org/resources/publication/global-mercury-assessment-2018

[2] https://www.mercuryconvention.org/en

Latest highlights

Anthropogenic iron impact on the surface productivity in the Pacific Transition Zone

Hawco and colleagues investigated the influence of industrial emissions on oceanic iron supply and its ecological consequences in the North Pacific.

Trace metal effluxes from Peruvian shelf sediments

Liu and co-authors compared four methods to estimate dissolved iron fluxes from Peruvian shelf sediments, revealing large variability.

Coupling copper and neodymium data highlights the importance of the margin sources for the copper oceanic cycle

Lemaitre and co-workers analysed the dissolved concentrations and isotopes along the GEOVIDE (GA01) section in the North Atlantic Ocean.

High levels of anthropogenic lead in the Indian Ocean

Yadav and her colleagues provide comprehensive insights into the distribution and sources of dissolved lead in the Indian Ocean.

Rechercher