Using machine learning to accurately simulate the oceanic barium distribution

Mete and colleagues (2023, see reference below) used Machine Learning (ML) to predict the global distribution of oceanic barium (Ba). Models were first trained to predict [Ba] from standard oceanographic observations using GEOTRACES data from the Arctic, Atlantic, Pacific, and Southern oceans. Model predictions of [Ba] were then compared with actual [Ba] data from the Indian Ocean, with the best models achieving a mean absolute percentage error of just 6.0 %. This successful comparison allowed the authors to calculate the global distribution of [Ba], Ba*, and marine barite saturation using data from the World Ocean Atlas. This approach revealed four significant findings: 1) the ocean contains 122±7 Tmol of dissolved Ba; 2) the variability in the barium–silicon relationship is consistent with the biogeochemical characteristics of both elements; 3) marine barite saturation exhibits systematic spatial and vertical variations; 4) taken as a whole, the ocean below 1000 m is at equilibrium with respect to barite. These results have broad implications, both for the modern ocean and for interpreting paleo-records of barite. A data product, which includes a global grid of predictions and the ML model itself, is freely available from BCO-DMO: https://www.bco-dmo.org/dataset/885506.

Figure: Model output showing the dissolved distribution of [Ba], Ba*, and barite saturation state (Ωbarite) in the surface of the Southern Ocean. Barium-star represents the difference between ‘in situ’ (i.e., ML model predicted) and silicate-predicted [Ba], defined as Ba* = [Ba]in situ – (0.54 × [Si] + 39.3). Barite saturation state, Ωbarite, is the ratio between the Ba and sulfate ion product and the in situ barite solubility product. The dashed and dotted lines show the locations of the southern Antarctic Circumpolar Current Front and the Subantarctic Front, respectively.

Reference:

Mete, Ö. Z., Subhas, A. V., Kim, H. H., Dunlea, A. G., Whitmore, L. M., Shiller, A. M., Gilbert, M., Leavitt, W. D., & Horner, T. J. (2023). Barium in seawater: dissolved distribution, relationship to silicon, and barite saturation state determined using machine learning. Earth System Science Data, 15, 4023–4045. Access the paper: 10.5194/essd-15-4023-2023

Latest highlights

Sedimentary controls on seawater nickel distributions and nickel isotope compositions: a two steps study

Nickel isotopic mass balance in the ocean stands among the less understood so far…

23 million years of productivity reconstructed in the Central Pacific Ocean using past and modern proxies

Using diverse geochemical proxies, Chu and colleagues analysed an iron–manganese crust to reconstruct central Pacific productivity over the past 23 million years.

Lead isotopes reveal that hydrothermal variability is driven by Sea‐Level change and transient magmatism

De and colleagues present the first millennial-scale reconstruction of hydrothermal variability at a mid-ocean ridge using lead isotopes from iron-manganese coatings…

Long-range transport of iron via the Agulhas Current and counter-current: a boon for the phytoplankton

Authors establish that significant iron fertilisation via the Agulhas current explains the Indian Subantarctic blooms…

Rechercher