First direct measurements of luxury iron uptake in natural phytoplankton communities: surprising results!

Joint Science Highlight with the US Ocean Carbon & Biogeochemistry Programme (OCB).

The uptake of iron by phytoplankton is a key part of the marine iron cycle, but we still have a rudimentary understanding of the controls on this process. It is generally assumed that dissolved iron availability controls phytoplankton iron. Combining data from the GP16 GEOTRACES section and three other GEOTRACES-compliant cruises in the eastern Pacific, Twining et al. (2020, see reference below) show that phytoplankton iron contents (aka, quotas) vary 40-fold across environmental gradients. Further, taxa prone to nitrogen limitation such as diatoms accumulate iron more than expected, even under extremely low iron conditions. Modeling indicates that this is a widespread occurrence in the low-Fe oligotrophic Pacific. This study provides the first direct measurements of luxury iron uptake in natural communities and shows how it can vary between diatom taxa, with Pseudo-nitzschia able to accumulate luxury iron even in the low-Fe sub-Arctic North Pacific. These findings demonstrate the importance of biology and ecology to understanding iron biogeochemistry.

Figure. Response of iron quotas to nutrient gradients in the South Pacific Ocean. a) location of stations on GP16 cruise, plotted over bathymetry. b) phytoplankton abundance (total Chl a), nitrate, dFe, and relative diatom abundance (% fucoxanthin, a pigment proxy for diatoms) across the onshore-offshore gradient. Data are means of upper 50m at each station. Dashed blue lines delineate putative coastal, HNLC, and oligotrophic regions (Boiteau et al. 2016). c) Taxon-specific Fe quotas (geometric means +/- SE) as a function of location. Dashed red line indicates the optimal Fe/C estimated for open-ocean phytoplankton under low dFe. Symbol colors are as indicated in panel d legend: red – autotrophic flagellates (aflag), green – centric diatoms (centric), blue – pennate diatoms (pennate). d) Taxon-specific Fe quotas as a function of dFe. Also plotted is predicted FeCopt. e) Response of taxon-specific Fe quotas to gradients in ambient nitrate and dFe. Symbol color indicates Fe/C (mol/umol). Arrows indicate direction of cruise track, moving from shelf westward into the gyre.

Reference:

Twining, B. S., O. Antipova, P. D. Chappell, N. R. Cohen, J. Jacquot, E. L. Mann, A. Marchetti, D. C. Ohnemus, S. Rauschenberg, and A. Tagliabue. 2020. Taxonomic and nutrient controls on phytoplankton iron quotas in the ocean. Limnology & Oceanography Letters. Access the paper: https://aslopubs.onlinelibrary.wiley.com/doi/10.1002/lol2.10179

Latest highlights

Overlooked riverine contributions of dissolved neodymium and hafnium to the Amazon estuary and oceans

Xu and colleagues investigated the isotopic composition of dissolved neodymium and hafnium along the entire salinity gradient of the Amazon estuary.

Pulling back the veil on reversible scavenging of lead

This work further contains the role that reversible scavenging may play in the cycling of lead in the ocean, an ever-evolving global experiment where lead contamination can be tracked in real-time.

Extremely high radioactive levels in the manganese nodules

Volz and co-authors demonstrate that radioisotopes in the manganese nodules mostly exceed exempt activity levels…

The North Pacific Ocean, a key actor for the zinc oceanic cycle

Sieber and his colleagues lift the veil on some of the mechanisms that control the behavior of zinc in the Pacific Ocean, and more globally.

Rechercher