Loss of old Arctic sea ice increases methylmercury concentrations

Arctic sea ice regulates the air-sea exchange of volatile mercury species such as dimethylmercury and elemental Hg, and is known to harbor mercury methylating microbes that produce neurotoxic and bioamplifying monomethylmercury. Arctic sea ice accounts for 57% of the total primary production in the Arctic Ocean, suggesting that it could be the main source of monomethylmercury for Arctic food webs. Despite this, little is known about mercury concentrations and speciation in arctic sea ice. Researchers from the SCRIPPS (USA), the Stockholm Natural Museum (Sweden) and the Mediterranean Institute of Oceanography (France) show the importance of sea ice composition on methylmercury budgets. The authors propose that the shift from older sea ice to younger sea ice has resulted in a 40% increase in methymercury since 1979 despite a 45% decrease in sea ice volume. About 30% of sea ice methylmercury is made up by dimethylmercury. This means that when sea ice melts in the summer, it could contribute significant dimethylmercury evasion to the atmosphere, which is comparable to diffusion from seawater. This study shows the importance of climate change on the biogeochemical cycle of a contaminant. Notably the methylmercury content of rapidly shrinking arctic sea ice and the exposure of sea ice biota may not be decreasing as previously thought.

Picture: Researchers Lars-Eric Heimburger and Aridane González collecting sea ice cores.

Reference:

Schartup, A. T., Soerensen, A. L., & Heimbürger-Boavida, L.-E. (2020). Influence of the Arctic Sea-Ice Regime Shift on Sea-Ice Methylated Mercury Trends. Environmental Science & Technology Letters (just accepted) DOI: https://doi.org/10.1021/acs.estlett.0c00465

Latest highlights

North-South radium-228 section in the Pacific Ocean

Moore and colleagues present results from radium-228 along the U.S. GEOTRACES Pacific Meridional Transect (GP15).

Strong lithogenic imprints in the Indian Ocean waters

Ueki and co-authors reported the first sectional distributions of zirconium, hafnium and niobium along a north-south track in the Indian Ocean.

The development of the modern Antarctic Circumpolar Current occurred much later than previously thought!

This study is challenging the belief that the onset of the Antarctic Circumpolar Current was solely triggered by the opening and deepening of Southern Ocean Gateways.

A dynamic iron cycle in Peru

Gu and colleagues explore the temporal variation of iron over 11 cruises along the Peruvian shelf.

Rechercher