Loss of old Arctic sea ice increases methylmercury concentrations

Arctic sea ice regulates the air-sea exchange of volatile mercury species such as dimethylmercury and elemental Hg, and is known to harbor mercury methylating microbes that produce neurotoxic and bioamplifying monomethylmercury. Arctic sea ice accounts for 57% of the total primary production in the Arctic Ocean, suggesting that it could be the main source of monomethylmercury for Arctic food webs. Despite this, little is known about mercury concentrations and speciation in arctic sea ice. Researchers from the SCRIPPS (USA), the Stockholm Natural Museum (Sweden) and the Mediterranean Institute of Oceanography (France) show the importance of sea ice composition on methylmercury budgets. The authors propose that the shift from older sea ice to younger sea ice has resulted in a 40% increase in methymercury since 1979 despite a 45% decrease in sea ice volume. About 30% of sea ice methylmercury is made up by dimethylmercury. This means that when sea ice melts in the summer, it could contribute significant dimethylmercury evasion to the atmosphere, which is comparable to diffusion from seawater. This study shows the importance of climate change on the biogeochemical cycle of a contaminant. Notably the methylmercury content of rapidly shrinking arctic sea ice and the exposure of sea ice biota may not be decreasing as previously thought.

Picture: Researchers Lars-Eric Heimburger and Aridane González collecting sea ice cores.

Reference:

Schartup, A. T., Soerensen, A. L., & Heimbürger-Boavida, L.-E. (2020). Influence of the Arctic Sea-Ice Regime Shift on Sea-Ice Methylated Mercury Trends. Environmental Science & Technology Letters (just accepted) DOI: https://doi.org/10.1021/acs.estlett.0c00465

Latest highlights

Oceanic lead concentrations and isotopes mapped using explainable machine learning

Using three machine learning models, Olivelli and her colleagues generated global climatologies of lead concentrations and isotopes…

Dissolved nickel sources: transformation and sinks in the Arabian Sea

Malla and co-authors present an extensive study of the distribution of dissolved nickel in the Arabian Sea.

Linking cadmium cycling to phosphate dynamics in the Indian Ocean: Evidence from GEOTRACES transects

Mishra and Singh determined cadmium and phosphate concentrations along 34 complete vertical profiles in the Indian Ocean.

New software enables global ocean biogeochemical modeling in Python

The newly designed tmm4py software makes biogeochemical modelling more widely accessible.

Rechercher