Iron isotopes in the Equatorial Pacific Ocean: when the dissolved phases are heavier than the particulate ones

A detailed study of the dissolved and particulate iron (Fe) concentrations and isotopes off the Papua New Guinea coast is proposed. Regarding the sources, iron isotopic composition (δ56Fe) values reveal that the aerosols are heavier than the average crustal value while the sediments and river/volcano waters display δ56Fe similar to crustal values.

Surprisingly, all along the vertical profiles (down to 1000m) the dissolved phase is almost systematically heavier than the particulate one (see figure below). This likely reflects equilibrium exchanges between the dissolved and particulate iron. These interactions seem to result in a net non reductive release of dissolved iron. The intensity of this release suggests this process could play an important role on the global scale.

2015 Labatut l

Figure.
Dissolved (triangles) and particulate (circles) Fe isotopic composition profiles in ‰ in three different stations in the Western Equatorial Pacific Ocean: (a) in Vitiaz Strait, (b) close to the Papua New Guinea coast downstream the Sepik river, and (c) close to New Ireland coast. The difference between dissolved and particulate iron isotopic composition (Δ56FeDFe – PFe) is represented by the colored area. It shows that the dissolved phase is almost systematically heavier (more positive values) than the particulate one with Δ56FeDFe – PFe = + 0.27 ± 0.25‰ (2SD, n = 11). Click here to view the figure larger.

 

Reference:

Labatut, M., Lacan, F., Pradoux, C., Chmeleff, J., Radic, A., Murray, J. W., Poitrasson, F., Johansen, A. M., Thil, F. (2014). Iron sources and dissolved-particulate interactions in the seawater of the Western Equatorial Pacific, iron isotope perspectives. Global Biogeochemical Cycles, 28(10), 1044–1065. doi:10.1002/2014GB004928 Click here to view the paper.

Latest highlights

Science Highlights

Different fates of four poorly soluble trace elements in the Pacific Ocean

Zheng and co-authors present the full-depth distributions of aluminum, lead, manganese and copper in the western South Pacific.

24.11.2022

Science Highlights

Internal tides, energetic dynamical processes that generate particle nepheloids at different depths

In this study, Barbot and co-authors identified the sites where internal tides are responsible for sediment resuspension…

09.11.2022

Science Highlights

Greenland’s floating ice tongues, sources of dissolved lead to the Arctic

Using helium and neon as tracers for subglacial meltwater, Krisch and colleagues found that subglacial discharge is a source of dissolved lead.

Science Highlights

Shelf sediments in the Benguela Upwelling System as a major source of trace metals to the shelf and eastern South Atlantic Ocean

Liu and her colleagues investigated dissolved trace metals distributions within the Benguela Upwelling System sampled from GEOTRACES GA08 cruise.

21.10.2022

Rechercher