Iron isotopes in the Equatorial Pacific Ocean: when the dissolved phases are heavier than the particulate ones

A detailed study of the dissolved and particulate iron (Fe) concentrations and isotopes off the Papua New Guinea coast is proposed. Regarding the sources, iron isotopic composition (δ56Fe) values reveal that the aerosols are heavier than the average crustal value while the sediments and river/volcano waters display δ56Fe similar to crustal values.

Surprisingly, all along the vertical profiles (down to 1000m) the dissolved phase is almost systematically heavier than the particulate one (see figure below). This likely reflects equilibrium exchanges between the dissolved and particulate iron. These interactions seem to result in a net non reductive release of dissolved iron. The intensity of this release suggests this process could play an important role on the global scale.

2015 Labatut l

Dissolved (triangles) and particulate (circles) Fe isotopic composition profiles in ‰ in three different stations in the Western Equatorial Pacific Ocean: (a) in Vitiaz Strait, (b) close to the Papua New Guinea coast downstream the Sepik river, and (c) close to New Ireland coast. The difference between dissolved and particulate iron isotopic composition (Δ56FeDFe – PFe) is represented by the colored area. It shows that the dissolved phase is almost systematically heavier (more positive values) than the particulate one with Δ56FeDFe – PFe = + 0.27 ± 0.25‰ (2SD, n = 11). Click here to view the figure larger.



Labatut, M., Lacan, F., Pradoux, C., Chmeleff, J., Radic, A., Murray, J. W., Poitrasson, F., Johansen, A. M., Thil, F. (2014). Iron sources and dissolved-particulate interactions in the seawater of the Western Equatorial Pacific, iron isotope perspectives. Global Biogeochemical Cycles, 28(10), 1044–1065. doi:10.1002/2014GB004928 Click here to view the paper.

Latest highlights

Science Highlights

Controls of cadmium-phosphate systematic unraveled by Neural Networks and Ocean Circulation Inverse Model

Roshan and DeVries explore the similarities and contrasts between oceanic cadmium and phosphate cycles using an Artificial Neural Network mapping technique and Ocean Circulation Inverse Model.


Science Highlights

Retreat of large marine-terminating glaciers may increase iron supply to surface waters

The findings demonstrate that glacial retreat and loss of ice-shelves may potentially result in increases in dissolved Fe supply to surface waters downstream of large marine terminating glaciers in future.


Science Highlights

A new and more quantitative atlas of the deep-sea burial fluxes of major and trace elements

Among other findings, authors find that the new opal flux is roughly a factor of two increase over previous estimates having important implications for the global silicon cycle.


Science Highlights

Updated compilation of the global continental and marine lithogenic neodymium isotopic measurements

This new compilation and gridded datasets offer a concrete way forward to improve the application of neodymium isotopes as a useful tracer of ocean circulation.