Icebergs; a huge but highly variable source of iron to the ocean

Icebergs have been speculated to constitute one of the largest fluxes of iron (Fe) into the polar oceans since the 1930s and thus recent increases in ice discharge around the world could potentially change Fe availability in the ocean. But how much Fe is in an iceberg? As part of an international collaboration involving several cruises over the past 5 years including the GEOTRACES Fram Strait GN05 section Hopwood et al., (2019, see reference below) report the concentrations of Fe in ice from over 10 glaciated regions around the world. The global mean iceberg Fe content is found to be similar to, or slightly higher than, limited earlier estimates. However, a critical insight is the highly uneven distribution of this Fe with the ‘dirtiest’ 4% of samples collected accounting for over 90% of the cumulative Fe. Investigating how these ‘dirty’ layers are formed and their fate in the ocean is therefore essential to determining the significance of icebergs for marine primary production.

19 Hopwood

Figure: Ice from around the world is found to have a highly variable total dissolvable Fe content ranging from 2 nM to 2 mM.

Reference:

Mark J. Hopwood, Dustin Carroll, Juan Höfer, Eric P. Achterberg, Lorenz Meire, Frédéric A. C. Le Moigne, Lennart T. Bach, Charlotte Eich, David A. Sutherland & Humberto E. González, (2019) High variability is evident even within individual geographic regions. Reference: Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export, Nature Communications, 10, 5261 DOI: https://doi.org/10.1038/s41467-019-13231-0

Latest highlights

Rare Earth and neodymium isotope cycles in the abyssal Pacific Ocean are shaking up the paradigm established for particle reactive tracers

Du and colleagues demonstrate the importance of the abyssal sediment source in the control of the trace element and isotopes marine distribution.

Anthropogenic iron impact on the surface productivity in the Pacific Transition Zone

Hawco and colleagues investigated the influence of industrial emissions on oceanic iron supply and its ecological consequences in the North Pacific.

Trace metal effluxes from Peruvian shelf sediments

Liu and co-authors compared four methods to estimate dissolved iron fluxes from Peruvian shelf sediments, revealing large variability.

Coupling copper and neodymium data highlights the importance of the margin sources for the copper oceanic cycle

Lemaitre and co-workers analysed the dissolved concentrations and isotopes along the GEOVIDE (GA01) section in the North Atlantic Ocean.

Rechercher