Hydrothermalism: A significant dissolved iron source for the deep waters ?

A North-South basin-scale full-depth section profile of dissolved Fe was realized in the Indian Ocean, as part of the first GEOTRACES Japanese cruise (Nov 2009 – Jan 2010). The data clearly show that hydrothermal Fe is distributed over 3000 km distance around a depth of ~ 3000 m, and that a large fraction of this Fe is truly dissolved. Several other sources supplying dissolved Fe to deep waters (e.g terrestrial Fe input) with a persistent condition in the oxygen minimum zone (OMZ) were also evidenced.

Nishioka_jun_elsevier

Source: Science Direct (click on the image to view it larger)

Reference:

Jun Nishioka, Hajime Obata, Daisuke Tsumune (2013), Evidence of an extensive spread of hydrothermal dissolved iron in the Indian Ocean : Earth and Planetary Science Letters, ELSEVIER (361) p. 26-33, DOI: /10.1016/j.epsl.2012.11.040

Latest highlights

North-South radium-228 section in the Pacific Ocean

Moore and colleagues present results from radium-228 along the U.S. GEOTRACES Pacific Meridional Transect (GP15).

Strong lithogenic imprints in the Indian Ocean waters

Ueki and co-authors reported the first sectional distributions of zirconium, hafnium and niobium along a north-south track in the Indian Ocean.

The development of the modern Antarctic Circumpolar Current occurred much later than previously thought!

This study is challenging the belief that the onset of the Antarctic Circumpolar Current was solely triggered by the opening and deepening of Southern Ocean Gateways.

A dynamic iron cycle in Peru

Gu and colleagues explore the temporal variation of iron over 11 cruises along the Peruvian shelf.

Rechercher