High mesopelagic carbon remineralization traced by particulate biogenic barium in the North Atlantic Ocean

The high resolution section of particulate “excess Ba” (Baxs) measured by Lemaitre and co-authors (2018, see reference below) along the GEOVIDE GA1 section (R/V Pourquoi Pas? spring 2014) confirmed the ability of this parameter as proxy of the particulate organic carbon (POC) remineralization. Despite their importance for the biological pump quantification, POC remineralization data are still very scarce in the world ocean (see figure B below). Lemaitre’s work is a major contribution: besides validating the relationship between Baxs and oxygen consumption, it revealed significant remineralization rates at the time and location of the cruise, allowing establishing a biological pump scheme along the section (see figure C below). The link between the estimated POC export fluxes and the surface ecosystems is also discussed.

18 Lemaitre lFigure: (A) Relationship of the mesopelagic Baxs concentration versus the O2 consumption rate using the Southern Ocean transfer function (Dehairs et al., 1997) and the transfer function obtained in this study for the North Atlantic. (B) Summary of published POC remineralisation fluxes in the world ocean. (C) General schematic of the biological carbon pump in different provinces of the North Atlantic during GEOVIDE. Click here to view the figure larger.

Reference:

Lemaitre, N., Planquette, H., Planchon, F., Sarthou, G., Jacquet, S., García-Ibáñez, M. I., Gourain, A., Cheize, M., Monin, L., André, L., Laha, P., Terryn, H., Dehairs, F. (2018). Particulate barium tracing of significant mesopelagic carbon remineralisation in the North Atlantic. Biogeosciences, 15(8), 2289–2307. http://doi.org/10.5194/bg-15-2289-2018

Latest highlights

Sedimentary controls on seawater nickel distributions and nickel isotope compositions: a two steps study

Nickel isotopic mass balance in the ocean stands among the less understood so far…

23 million years of productivity reconstructed in the Central Pacific Ocean using past and modern proxies

Using diverse geochemical proxies, Chu and colleagues analysed an iron–manganese crust to reconstruct central Pacific productivity over the past 23 million years.

Lead isotopes reveal that hydrothermal variability is driven by Sea‐Level change and transient magmatism

De and colleagues present the first millennial-scale reconstruction of hydrothermal variability at a mid-ocean ridge using lead isotopes from iron-manganese coatings…

Long-range transport of iron via the Agulhas Current and counter-current: a boon for the phytoplankton

Authors establish that significant iron fertilisation via the Agulhas current explains the Indian Subantarctic blooms…

Rechercher