Drawing the future of phytoplankton in a changing ocean

Phytoplankton development is strongly linked to the dissolved iron availability in the surface waters. Iron’s behavior is sensitive to warming, stratification, acidification and de-oxygenation. In a changing ocean, these processes in addition to nutrient co-limitation interactions with iron biogeochemistry will all strongly influence phytoplankton dynamics. This paper establishes the potential future shifts in multiple facets of iron biogeochemistry, from cellular physiology to ocean circulation. Possible impacts of these multiple changes on diatoms and trichodesmium are illustrated in the figure below. This work warns us on the urgent need to improve our present knowledge of the micronutrient cycle forcing, in order to better predict their future behaviors.


17 Hutchins
Figure: Interactive influences of the changing ocean iron cycle on diatoms and nitrogen-fixing cyanobacteria. Iron biogeochemistry will respond to global change-related warming (red), increased light (yellow), acidification (black), loss of oxygen (green), and lowered inputs of the nutrients nitrate (white), silicate (grey) and phosphate (blue). This will have direct consequences for the growth and physiology of both phytoplankton groups, as well as indirect effects on critical resource supply ratios (boxes). Important components of the marine iron cycle responding to environmental change include inputs from dust, complexation by organic ligands, redox chemistry, and biological availability (orange). Click here to view the figure larger. (adapted from Hutchins and Boyd 2016, with thanks to J. Brown for graphics)

Reference:

Hutchins, D. A., & Boyd, P. W. (2016). Marine phytoplankton and the changing ocean iron cycle. Nature Climate Change, 6(12), 1072–1079. DOI: 10.1038/nclimate3147

Latest highlights

Anthropogenic iron impact on the surface productivity in the Pacific Transition Zone

Hawco and colleagues investigated the influence of industrial emissions on oceanic iron supply and its ecological consequences in the North Pacific.

Trace metal effluxes from Peruvian shelf sediments

Liu and co-authors compared four methods to estimate dissolved iron fluxes from Peruvian shelf sediments, revealing large variability.

Coupling copper and neodymium data highlights the importance of the margin sources for the copper oceanic cycle

Lemaitre and co-workers analysed the dissolved concentrations and isotopes along the GEOVIDE (GA01) section in the North Atlantic Ocean.

High levels of anthropogenic lead in the Indian Ocean

Yadav and her colleagues provide comprehensive insights into the distribution and sources of dissolved lead in the Indian Ocean.

Rechercher