Dust deposition rates extracted from a data-assimilation model of the aluminium oceanic cycle

Using dissolved aluminium (Al) data measured along 11 sections and extracted from the GEOTRACES intermediate data product (IDP2017), Xu and Weber (2021, see reference below) developed a data-assimilation model of the Al oceanic cycle. This model considers all the processes that might affect the oceanic Al distribution, i.e.: advection, diffusion, deposition of soluble Al from dust, hydrothermal sources, adsorption, desorption, uptake by diatoms, remineralization after diatom dissolution and resuspension from seafloor sediment.  Model parameters are optimized and twelve dust distributions from atmospheric models are tested to determine the patterns and rates of Al deposition that are most consistent with the GEOTRACES sections, while a range of circulation configurations are used to propagate uncertainty.  

Ultimately, the authors determined that 37.2 +/- 11 Gmol of Al must be annually added to the ocean to reproduce the data, with the Atlantic receiving significantly more soluble Al than the Indian or Pacific Oceans. Using the soluble iron:aluminium (Fe:Al) ratio observed in dust, rates of aeolian iron input to the ocean are also estimated. Globally it falls between 2.3 and 9.1 Gmol/yr, but mostly falls short of the biological Fe demand through much of the ocean.

Figure: (a) Soluble Al deposition (mmol/m2/yr) averaged across 60 optimized model configurations, weighted by their skill at reproducing GEOTRACES Al section data. Basin-integrated rates and uncertainty ranges are annotated. (b) Ratio of estimated Fe supply from dust to the Fe demand of upper ocean phytoplankton communities (estimated from satellite-derived C export and an assumed Fe:C uptake ratio). Values lower than 1 indicate that dust cannot meet the entire biological Fe demand.

Reference:

Xu, H., & Weber, T. (2021). Ocean Dust Deposition Rates Constrained in a Data‐Assimilation Model of the Marine Aluminum Cycle. Global Biogeochemical Cycles, 35(9). doi: 10.1029/2021gb007049

Latest highlights

The development of the modern Antarctic Circumpolar Current occurred much later than previously thought!

This study is challenging the belief that the onset of the Antarctic Circumpolar Current was solely triggered by the opening and deepening of Southern Ocean Gateways.

A dynamic iron cycle in Peru

Gu and colleagues explore the temporal variation of iron over 11 cruises along the Peruvian shelf.

Trace metal fluxes of cadmium, copper, lead and zinc from the Congo River into the South Atlantic Ocean are supplemented by atmospheric inputs

Liu and colleagues show that rainfall augments some fluxes of trace metals from the Congo River.

Aluminium, manganese, iron, cobalt, and lead display contrasting fate along north–south and east–west sections in the North Pacific Ocean

Chan et co-authors provide a comprehensive view of trace metal distribution in the subarctic Pacific Ocean.

Rechercher