Dissolved iron sources in the North Atlantic Ocean quantified

The relative importance of four different dissolved iron (Fe) sources in the North Atlantic Ocean have been precisely determined for the first time thanks to GEOTRACES.

Using a novel method based on the stable isotopic composition of dissolved Fe, Conway and John (2014, see reference below) have “fingerprinted” different sources of Fe along a section in the North Atlantic Ocean (GEOTRACES GA03 section). This has allowed the scientists to determine precisely the relative contribution of these sources to the North Atlantic Ocean. They found that the dominant sources were Saharan dust, which contributes 71-87 per cent of dissolved iron, followed by North American margin sediments (10-19 per cent). Smaller contributions were observed from the African margins (1-4 per cent) and hydrothermal venting at the Mid-Atlantic Ridge (2-6 per cent).

Since Fe is an essential marine micronutrient for phytoplankton, the scarcity of dissolved Fe in surface waters limits biological productivity over much of the oceans. Thus, changes in Fe inputs from different dissolved Fe sources have important implications for patterns of marine productivity and the global carbon cycle. This study therefore represents a significant contribution to our understanding of how dissolved Fe may influence past and future global change.

14 2 comway 2x2 l
Figure: The figure shows the fraction of the seawater-dissolved Fe across the GA03 North Atlantic section that originates from each of four distinct sources : 1. Fe from oxygenated sediments on the North American margin (fnon-red); 2. Fe released by dissolution of atmospheric dust (fdust);  3. Fe from reducing sedimentry porewaters on the West African Margin (fred); and 4. Fe from hydrothermal venting on the Mid-Atlantic Ridge (fhyd). Click here to view it larger.



Tim M. Conway, Seth G. John (2014) Quantification of dissolved iron sources to the North Atlantic Ocean, Nature. doi:10.1038/nature13482. Click here to access the paper.

Latest highlights

Science Highlights

Trace metal quotas in small flagellates: diatoms are challenged!

Sofen and colleagues found that in natural plankton assemblages and in culture, small flagellates operated at the lower range of iron quotas.


Science Highlights

A vivid picture of particle distribution and sources in the Arctic Ocean

Extensive description of particle concentrations and chlorophyll-a fluorescence distribution along Arctic GEOTRACES sections.


Science Highlights

The Tonga arc, an iron boundary in the South West Pacific Ocean

As part of the TONGA GEOTRACES process study, Tilliette and colleagues identified high dissolved iron concentrations in the west of the Tonga arc.


Science Highlights

Dominance of the benthic flux of rare earth elements on continental shelves

Deng and his colleagues focus on one of the largest land–ocean interfaces in Asia, the Changjiang River–East China Sea system.