Decoupling between dissolved zinc and silicon in the North Atlantic Ocean driven by mixing of end-members

Roshan and Wu (2015, see reference below) reveal that the correlation between dissolved zinc (Zn) and silicon (Si) is relatively weak in the North Atlantic Ocean (GA03 US section). They use the results of an Optimum Multi-Parameter Water Mass Analysis to establish which parameter is mainly controlling the Zn distribution. Surprisingly, they present evidence that remineralization might have an insignificant effect on the zinc distribution in this region. They conclude that dissolved zinc in the North Atlantic Ocean is mainly controlled by water mass mixing, although some water mass end-members exhibit deviations in the Zn-Si correlation, as for example the Mediterranean Outflow Waters. Unexpected large Zn inputs of hydrothermal origin are also perturbing the game…

15 Roshan

Figure: Top panel shows the distribution of dissolved Zn along the GA03. Bottom panel shows the Zn-Si relationship for the zonal (left) and meridional (right) transect. Disappearance of a linear correlation is evident, particularly for the meridional transect where the Mediterranean waters have a great influence. Click here to view the figure larger.

Reference:

Roshan, S., & Wu, J. (2015). Water mass mixing: The dominant control on the zinc distribution in the North Atlantic Ocean. Global Biogeochemical Cycles, 29(7), 1060–1074. doi:10.1002/2014GB005026

Latest highlights

Contrasting organic carbon  remineralisation rates revealed by particulate excess barium in the North Pacific and South China Sea

Yuan and co-workers quantify organic carbon remineralisation in the twilight zone of the China Sea using particulate excess barium as a proxy…

Sedimentary controls on seawater nickel distributions and nickel isotope compositions: a two steps study

Nickel isotopic mass balance in the ocean stands among the less understood so far…

23 million years of productivity reconstructed in the Central Pacific Ocean using past and modern proxies

Using diverse geochemical proxies, Chu and colleagues analysed an iron–manganese crust to reconstruct central Pacific productivity over the past 23 million years.

Lead isotopes reveal that hydrothermal variability is driven by Sea‐Level change and transient magmatism

De and colleagues present the first millennial-scale reconstruction of hydrothermal variability at a mid-ocean ridge using lead isotopes from iron-manganese coatings…

Rechercher