Debate on the dissolved nickel bioavailibility in surface waters

John and co-authors (2022, see reference below) tackle one of the known paradoxes regarding trace metal cycles in the ocean: the dissolved nickel (Ni) leftover systematically observed in surface waters while Ni is a limiting factor for the phytoplankton development. Their strategy follows a double approach: test of the lability and bioavailability of Ni in the surface ocean using trace metal extraction from surface waters using chelating resins and controlled phytoplankton cultures, respectively; test of what controls the fluxes of Ni into the deeper ocean, with regards to the phosphate export and remineralization. These two main processes that govern the Ni cycles are thus confronted to field and experimental data using 7 different sensitivity tests with the AWSOME-OCIM model. In the end, the authors suggest that slow depletion of Ni relative to macronutrients in upwelling regions can explain the residual Ni pool. They also propose that slower regeneration of Ni compared with macronutrients explains the strong Ni enrichment in deep waters.

Figure: Modeled nickel concentrations match observations throughout the global oceans, with an R-squared of 0.95, where background fields represent model output and circles represent observations. Model nickel concentrations in the surface ocean are never depleted much below 2 nM, despite all of the Ni being bioavailable in the model. The model also reproduces the relatively deep regeneration of Ni compared to macronutrients N and P.

Reference:

John, S. G., Kelly, R. L., Bian, X., Fu, F., Smith, M. I., Lanning, N. T., Liang, H., Pasquier, B., Seelen, E. A., Holzer, M., Wasylenki, L., Conway, T. M., Fitzsimmons, J. N., Hutchins, D. A., & Yang, S.-C. (2022). The biogeochemical balance of oceanic nickel cycling. Nature Geoscience. Access the paper:10.1038/s41561-022-01045-7

Latest highlights

Anthropogenic iron impact on the surface productivity in the Pacific Transition Zone

Hawco and colleagues investigated the influence of industrial emissions on oceanic iron supply and its ecological consequences in the North Pacific.

Trace metal effluxes from Peruvian shelf sediments

Liu and co-authors compared four methods to estimate dissolved iron fluxes from Peruvian shelf sediments, revealing large variability.

Coupling copper and neodymium data highlights the importance of the margin sources for the copper oceanic cycle

Lemaitre and co-workers analysed the dissolved concentrations and isotopes along the GEOVIDE (GA01) section in the North Atlantic Ocean.

High levels of anthropogenic lead in the Indian Ocean

Yadav and her colleagues provide comprehensive insights into the distribution and sources of dissolved lead in the Indian Ocean.

Rechercher