Contrasting fates of the cadmium-cadmium isotopes in the Kuroshio and Oyashio environmental systems

Yang et al. (2018, see reference below) studied the relative importance of physical and biogeochemical processes on controlling the isotopic composition of dissolved and particulate cadmium (Cd) in a GP18 transect, crossing over the relatively cold and eutrophic Oyashio Extension region and the relatively warm and oligotrophic Kuroshio Extension region. Particulate samples revealed preferential uptake of light Cd isotopes by the biological activity. However, the fractionation effect varied dramatically in the surface water of the two regions, larger fractionation factors being observed in the Oyashio Extension region. The cycling in the Kuroshio Extension region was found to follow a closed system fractionation model, whilst the cycling of the Oyashio Extension region fits a steady-state open system fractionation model better. The findings are consistent with the hydrographic contrast in the two regions. In terms of the deep water, physical mixing controls the variations of dissolved Cd concentrations and isotopic composition.

2018 Yang
Figure:
Locations of sampling stations and averaged chlorophyll a concentrations in 2011. Stations TR13, TR15 and TR16 are located in Oyashio extension region, whereas the other stations are located in Kuroshio extension region. Fig. B and C:
Transects of dissolved Cd concentrations and isotopic composition of the studied region, showing comparable distribution in the deep water and contrasting vertical gradient in the thermocline and surface water among Kuroshio and Oyashio stations. Click here to view the figure larger.

Reference:

Yang, S.-C. C., Zhang, J., Sohrin, Y., & Ho, T.-Y. Y. (2018). Cadmium cycling in the water column of the Kuroshio-Oyashio Extension region: Insights from dissolved and particulate isotopic composition. Geochimica et Cosmochimica Acta, 233, 66–80. http://doi.org/10.1016/j.gca.2018.05.001

 

Latest highlights

Science Highlights

Volcanic emissions in the Southern Ocean: an efficient and unexpected source of iron for this remote area

This study suggests that volcanic emission can represent a significant source of bioavailable Fe to open ocean anaemic ecosystems.

20.09.2021

Science Highlights

Surprisingly heavy silicon isotopes in the surface and deep Arctic Ocean

Brzezinski and his colleagues report on a comprehensive study of the Arctic Ocean silicic acid concentrations and silicon isotopic composition…

14.09.2021

Science Highlights

Unique winter dataset of particulate and dissolved cadmium in the Indian sector of the Southern Ocean

Cloete and collaborators analysed particulate and dissolved cadmium at 7 stations in austral winter along a North South section off South Africa.

06.09.2021

Science Highlights

A new proxy for ocean iron bioavailability

The approach established and verified in this study, opens a new way for determining dissolved iron bioavailability in samples across the ocean.

23.07.2021

Rechercher