Climate change induced spectacular increase of the land-ocean inputs in the Arctic Ocean

Measurements of radium-228 (228Ra) in the framework of the 2015 U.S. GEOTRACES Arctic Transect (GN01), revealed that the surface water content of this tracer has almost doubled over the last decade, specifically in the Transpolar Drift near the North Pole.

Radium isotopes are excellent tracers of land-ocean inputs. A mass balance model for 228Ra allowed Kipp and co-workers (2018, see reference below) to suggest that this increase is due to an intensification of shelf-derived material inputs to the central basin. These coastal changes, in turn, could also be delivering more nutrients, carbon, and other chemicals into the Arctic Ocean and lead to dramatic impacts on Arctic food webs and animal populations.

18 Kipp

Figure: Diminishing sea ice near the Arctic coast leaves more open water near the coast for winds to create waves. The increased wave action reaches down and stirs up sediments on shallow continental shelves, releasing radium and other chemicals that are carried up to the surface and swept away into the open ocean by currents such as the Transpolar Drift. Artwork: Natalie Renier, Woods Hole Oceanographic Institution. Please click here to view the figure larger.

Reference:

Kipp, L. E., Charette, M. A., Moore, W. S., Henderson, P. B., & Rigor, I. G. (2018). Increased fluxes of shelf-derived materials to the central Arctic Ocean. Science Advances, 4(1), eaao1302. DOI: http://doi.org/10.1126/sciadv.aao1302

Latest highlights

Science Highlights

Rare Earth Elements and neodymium isotopes as tracers in the Mediterranean Sea

Garcia-Solsona and co-workers analysed 9 seawater stations around the central Mediterranean Sea…

02.07.2020

Science Highlights

A new model simulates the speciation and dispersion of hydrothermal iron

Roshan and collaborators present new observations of dissolved iron and its physical speciation in the South Pacific

10.06.2020

Science Highlights

Mechanisms driving biological CO2 drawdown in the Subarctic Pacific unraveled

Nishioka and co-authors compiled comprehensive data sets of iron and macronutrients covering the whole subarctic Pacific…

04.06.2020

Science Highlights

The biogeochemical ventures of dissolved iron and manganese across the Arctic Ocean

The spatial distributions and biogeochemical cycling of dissolved Fe (dFe) and dissolved manganese (dMn) across the Arctic Ocean were established during summer and fall 2015. The Canadian GEOTRACES transect extended from the Canada Basin (CB) to the Labrador Sea (LS) via the Canadian Arctic Archipelago (CAA). The surface, subsurface and deep water distributions for both […]

15.05.2020

Rechercher