Breaking down disciplinary silos in marine sciences, a key to climate forecasting

In a Nature comment, Alessandro Tagliabue (2023, see reference below) exposes how ocean modelling must evolve to take the biological complexity of the surface ocean into account. There is an urgent need to understand how marine microbes are affected by the climate change, allowing us to forecast the future state of the oceans. Indeed, there is little confidence today on predictions of how marine microbes will react to global changes.

After an analysis of the pro and cons of the biogeochemical models, the mechanistic metabolic models, or the exploitation of statistics, Tagliabue advocates that researchers in mathematical and ecological theory should break down their disciplinary silos, to improve and share their fundamental knowledge and benefit from the growing computing power to develop new generations of models. These models allowing a considerable step forward in our ability to overcome the ocean complexity and to forecast it.

Phytoplankton blooms (green and light blue) in the southwestern South Atlantic Ocean near the Falkland Islands.
Credit: NASA Ocean Biology Processing Group. Collected by the two VIIRS sensors (NOAA 20 and Suomi-NPP) on January 5, 2021. NASA Ocean Biology Distributed Active Archive Center. Retrieved from https://oceancolor.gsfc.nasa.gov/gallery/738/

Reference:

Tagliabue, A. (2023). ‘Oceans are hugely complex’: modelling marine microbes is key to climate forecasts. Nature623, 250–252. Access the paper:10.1038/d41586-023-03425-4

Latest highlights

Hydrothermal activity detected above the ultra-slow South West Indian Ridge, using a multi-proxy approach

Baudet and colleagues demonstrate the occurrence of hydrothermal venting on the Southwest Indian Ridge…

To Ba or not to Ba: Evaluating water column excess particulate barium as a proxy for water column respiration

Rahman and co-workers examine the relationship between excess particulate barium and organic matter respiration in the water column…

Assessment of the Solomon Sea’s dissolved iron contribution to the Equatorial Under Current

Sarthou and co-workers analysed 11 vertical profiles of dissolved iron at the entrance, within, and at the exit of the Solomon Sea…

Major controls on the fate of dissolved manganese in the northeastern Indian Ocean

Malla and Singh investigated the key factors controlling dissolved manganese in the northeastern Indian Ocean.

Rechercher