Arsenic detoxification by phytoplankton reveals that arsenic species could be good proxies of phosphorus limitation

Some phytoplankton species have the capacity to modify surface water arsenic speciation, inhibiting its toxicity. Such detoxification is operative in oligotrophic waters when phosphate concentrations are below those for arsenic (As). During the US GEOTRACES North Atlantic transect, fine determination of As speciation allowed establishing the potential use of these detoxification products as indicators of phosphorus (P) limitation. The new As indicator has been used to assess P-limitation in the North Atlantic, improving on the contradictory assessments using the conventional proxies. The coupled relationship between As and P is a classic example of a biogeochemical cycle, and how such relationship can be used as a tool in oceanography.

Wurl_low

Figure: Relationship between inorganic phosphate, arsenite (As3+) and alkaline phosphate activity (APA), the latter being an enzyme to cleave organic-bound phosphate and typically increasing with decreasing inorganic phosphate. Arsenate (As5+) uptake by phytoplankton increases under low phosphate availability due to the chemical similarities between them. Detoxification includes reduction and excretion of As3+, consequently indicating moderate (orange background) and extreme (red background) limitation of phosphate. No phosphate limitation occurs if As3+ levels are below 1 nmol L-1 (green background).

 

Reference:

Wurl, O., L. Zimmer, and G.A. Cutter. 2013. Arsenic and phosphorus biogeochemistry in the ocean: Arsenic species as proxies for P-limitation. Limnol. Oceanogr. 58: 729-740. Click here to access the paper.

Latest highlights

Deep-sea mining, dewatering waste, accidental plumes and their potential consequences on trace metal fates in the North Pacific Ocean

Xiang and his colleagues conducted laboratory incubation experiments that simulate mining discharge into anoxic waters.

Biogeochemical behaviours of barium and radium-226 in the Pacific Ocean

Barium and radium-226 are not just proxies for nutrients and ocean circulation but are themselves marine biogeochemical tracers…

Intrigued by Rare Earth Elements and neodymium isotopes? A review for the curious

Vanessa Hatje and a group of Rare Earth Element (REE) specialists propose an exhaustive review on the behaviour of REE.

North-South section of bioactive cadmium, nickel, zinc, copper and iron along GEOTRACES transect GP19 in the Pacific Ocean

Zheng and his colleagues propose the first full sections of the simultaneous dissolved distributions of five nutrient-type trace metals in the western South Pacific Ocean.

Rechercher