Analyzing rapidly, precisely and semi-automatically lead isotopes on variable volumes of seawater (up to 1000 ml)

Zurbrick and co-authors present a relatively fast (2.5–6.5 hours), semi-automated system to extract lead (Pb) from seawater, with few chemicals yielding low blanks. They also demonstrate that subsequent Pb isotopic analyses are more precise using a multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) than high resolution ICP-MS (HR ICP-MS).

With the preceding work of Conway and co-workers (Conway et al., 2013) demonstrating similar analytical performances for iron (Fe), zinc (Zn) and cadmium (Cd), the ability of GEOTRACES community to determine key isotopes in seawater is clearly improving.

13 Zurbrick

Figure: A diagram representing the offline Pb extraction apparatus; sample Pb is loaded on a column, which is subsequently flushed with column wash to reduce salts followed by elution of Pb for analysis. Click here to view the figure larger.

 

References:

Zurbrick, C. M., Gallon, C., & Flegal, A. R. (2013). A new method for stable lead isotope extraction from seawater. Analytica Chimica Acta, 800, 29–35. DOI: 10.1016/j.aca.2013.09.002. Click here to access the paper.

Conway, T. M., Rosenberg, A. D., Adkins, J. F., & John, S. G. (2013). A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Analytica Chimica Acta, 793, 44–52. DOI: 10.1016/j.aca.2013.07.025. Click here to access the paper.

Latest highlights

Conservative behavior of radiogenic neodymium isotopes in the South Pacific interior

Zhang and co-workers present full-depth measurements of εNd and Nd concentrations along the GP21 transect across the South Pacific basin…

Neodymium isotopes trace past Antarctic Intermediate Water circulation in the Arabian Sea

Shukla and co-authors reconstruct ventilation in the Northwestern Indian Ocean…

Regional zinc cycling in the Indian Ocean

Chinni and his colleagues present dissolved zinc distributions across the Arabian Sea, Bay of Bengal and southern tropical Indian Ocean…

Contrasting organic carbon  remineralisation rates revealed by particulate excess barium in the North Pacific and South China Sea

Yuan and co-workers quantify organic carbon remineralisation in the twilight zone of the China Sea using particulate excess barium as a proxy…

Rechercher