A new method to measure lead isotopes in the ocean with an outstanding precision

A new method for the determination of seawater lead (Pb) isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. It involves 1 to 2 L of seawater, double spike, magnesium hydroxide coprecipitation, anion exchange chromatography and thermal ionization mass spectrometry. Ratios involving the minor 204Pb isotope are a factor of five more precise than previously published data, yielding uncertainties better than ±3‰. Results are presented on GEOTRACES intercalibration samples and a first depth profile from the eastern South Atlantic Ocean.

15 Paul l

Figure: Methodology to separate and analyse Pb isotopes and concentrations from seawater samples using a 207Pb-204Pb double spike and thermal ionisation mass spectrometry (TIMS). Click here to view the figure larger.

 

Reference:

Paul, M., Bridgestock, L., Rehkämper, M., van DeFlierdt, T., & Weiss, D. (2015). High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry. Analytica Chimica Acta, 863, 59–69. doi:10.1016/j.aca.2014.12.012. Click here to access the paper.

Latest highlights

Contrasting organic carbon  remineralisation rates revealed by particulate excess barium in the North Pacific and South China Sea

Yuan and co-workers quantify organic carbon remineralisation in the twilight zone of the China Sea using particulate excess barium as a proxy…

Sedimentary controls on seawater nickel distributions and nickel isotope compositions: a two steps study

Nickel isotopic mass balance in the ocean stands among the less understood so far…

23 million years of productivity reconstructed in the Central Pacific Ocean using past and modern proxies

Using diverse geochemical proxies, Chu and colleagues analysed an iron–manganese crust to reconstruct central Pacific productivity over the past 23 million years.

Lead isotopes reveal that hydrothermal variability is driven by Sea‐Level change and transient magmatism

De and colleagues present the first millennial-scale reconstruction of hydrothermal variability at a mid-ocean ridge using lead isotopes from iron-manganese coatings…

Rechercher