Slow-spreading ridges could be major oceanic iron contributor

A large dissolved iron- and manganese-rich plume has been detected by Saito and co-authors over the slow-spreading southern Mid-Atlantic Ridge. This discovery calls into question the assumption that deep-sea hydrothermal vents along slow-spreading ridges were negligible contributors to the oceanic iron inventory. This result urges reassessment and a likely increase of the contribution of hydrothermal vents to the supply of iron.

13 Saito Noble

Figure: A zonal section of dissolved iron in the South Atlantic. The higher iron concentrations (in warm colours red, orange) reveal a large plume at ∼2,900 m depth and 2 km in height.
Please click here to view the figure larger.

 

Reference:

Saito, Mak A., Abigail E. Noble, Alessandro Tagliabue, Tyler J. Goepfert, Carl H. Lamborg, William J. Jenkins (2013) Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source Nature Geoscience 6 (9), 775-770 DOI: 10.1038/ngeo1893

Latest highlights

Paradoxical influence of hydrothermal methylmercury on local ecosystems

Torres Rodríguez and her colleagues investigate hydrothermal mercury inputs at the Tonga volcanic arc and their impact on local surface ocean ecosystems.

Rare Earth and neodymium isotope cycles in the abyssal Pacific Ocean are shaking up the paradigm established for particle reactive tracers

Du and colleagues demonstrate the importance of the abyssal sediment source in the control of the trace element and isotopes marine distribution.

Anthropogenic iron impact on the surface productivity in the Pacific Transition Zone

Hawco and colleagues investigated the influence of industrial emissions on oceanic iron supply and its ecological consequences in the North Pacific.

Trace metal effluxes from Peruvian shelf sediments

Liu and co-authors compared four methods to estimate dissolved iron fluxes from Peruvian shelf sediments, revealing large variability.

Rechercher