Siderophores facilitate microbial adaptation to iron limitation in the eastern tropical Pacific Ocean

Siderophores are organic compounds secreted by microbes to facilitate iron uptake. Using new methods to characterize trace metal organic ligands in seawater, Boiteau and colleagues (2016, see reference below) measured the distribution of siderophores along the US East Pacific Zonal Transect (EPZT; GEOTRACES GP16). The cruise track crossed from the highly productive Peruvian coastal upwelling region into the oligotrophic central gyre. The study revealed important changes in siderophore composition and concentration across different nutrient regimes (see figure below). Siderophores were found to be nine times more abundant in the most iron-depleted areas of the transect compared to the iron-rich coastal zone. Companion phylogenetic analysis of siderophore synthesis genes in the TARA Oceans metagenomic catalogue led Boiteau and co-workers to suggest that lateral transfer of siderophore synthesis genes help microbes adapt to low iron conditions found in many regions of the ocean.

17 Repeta

Figure: Distribution of siderophores across the GEOTRACES EPZT. Amphibactin siderophores (top panel) appear as peaks in the trace of organic iron isolated from seawater (middle panels). Each peak represents a different molecular form of amphibactin. Concentrations of amphibactins across the ETPZ were low in the high iron coastal region, high in the HNLC region, and low again in the low iron oligotraphic region (lower panel). Please click here to view the figure larger.

Reference :

Boiteau, R. M., Mende, D. R., Hawco, N. J., McIlvin, M. R., Fitzsimmons, J. N., Saito, M. A., Sedwick, P. N., DeLong, E. F., Repeta, D. J. (2016). Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14237–14242. DOI: 10.1073/pnas.1608594113

Latest highlights

Rare Earth and neodymium isotope cycles in the abyssal Pacific Ocean are shaking up the paradigm established for particle reactive tracers

Du and colleagues demonstrate the importance of the abyssal sediment source in the control of the trace element and isotopes marine distribution.

Anthropogenic iron impact on the surface productivity in the Pacific Transition Zone

Hawco and colleagues investigated the influence of industrial emissions on oceanic iron supply and its ecological consequences in the North Pacific.

Trace metal effluxes from Peruvian shelf sediments

Liu and co-authors compared four methods to estimate dissolved iron fluxes from Peruvian shelf sediments, revealing large variability.

Coupling copper and neodymium data highlights the importance of the margin sources for the copper oceanic cycle

Lemaitre and co-workers analysed the dissolved concentrations and isotopes along the GEOVIDE (GA01) section in the North Atlantic Ocean.

Rechercher