Upwelled hydrothermal iron stimulates massive phytoplankton blooms in the Southern Ocean

Joint Science Highlight with US-Ocean Carbon & Biogeochemistry (US-OCB).

In a recent study, Ardyna et al (2019, see reference below) combined observations of profiling floats with historical trace element data and satellite altimetry and ocean color data from the Southern Ocean to reveal that dissolved iron (Fe) of hydrothermal origin can be upwelled to the surface. Furthermore, the activity of deep hydrothermal sources can influence upper ocean biogeochemical cycles of the Southern Ocean, and in particular stimulate the biological carbon pump.

Figure: Southern Ocean phytoplankton blooms showing distribution, biomass (circle size) and type (color key). Adapted from Ardyna, et al., 2019. Click on the figure to view it larger.

Reference:

Ardyna, M., Lacour, L., Sergi, S., d’Ovidio, F., Sallée, J.-B., Rembauville, M., Blain, S., Tagliabue, A., Schlitzer, R., Jeandel, C., Arrigo, K.R., Claustre, H. (2019). Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nature Communications, 10(1), 2451. DOI: https://doi.org/10.1038/s41467-019-09973-6

Latest highlights

Oceanic lead concentrations and isotopes mapped using explainable machine learning

Using three machine learning models, Olivelli and her colleagues generated global climatologies of lead concentrations and isotopes…

Dissolved nickel sources: transformation and sinks in the Arabian Sea

Malla and co-authors present an extensive study of the distribution of dissolved nickel in the Arabian Sea.

Linking cadmium cycling to phosphate dynamics in the Indian Ocean: Evidence from GEOTRACES transects

Mishra and Singh determined cadmium and phosphate concentrations along 34 complete vertical profiles in the Indian Ocean.

New software enables global ocean biogeochemical modeling in Python

The newly designed tmm4py software makes biogeochemical modelling more widely accessible.

Rechercher